Q – критерий розенбаума — мегаобучалка
Назначение критерия
Критерий используется для оценки различий между двумя выборками по уровню какого-либо признака, количественно измеренного. В каждой из выборок должно быть не менее 11 испытуемых.
Описание критерия
Это очень простой непараметрический критерий, который позволяет быстро оценить различия между двумя выборками по какому-либо признаку. Однако если критерий Q не выявляет достоверных различий, это еще не означает, что их действительно нет.
В этом случае стоит применить критерий φ* Фишера. Если же Q-критерий выявляет достоверные различия между выборками с уровнем значимости р<0,01, можно ограничиться только им и избежать трудностей применения других критериев.
Критерий применяется в тех случаях, когда данные представлены по крайней мере в порядковой шкале. Признак должен варьировать в каком-то диапазоне значений, иначе сопоставления с помощью Q -критерия просто невозможны. Например, если у нас только 3 значения признака, 1, 2 и 3, – нам очень трудно будет установить различия. Метод Розенбаума требует, следовательно, достаточно тонко измеренных признаков.
Применение критерия начинаем с того, что упорядочиваем значения признака в обеих выборках по нарастанию (или убыванию) признака. Лучше всего, если данные каждого испытуемого представлены на отдельной карточке. Тогда ничего не стоит упорядочить два ряда значений по интересующему нас признаку, раскладывая карточки на столе. Так мы сразу увидим, совпадают ли диапазоны значений, и если нет, то насколько один ряд значений “выше” (S1), а второй – “ниже” (S2). Для того, чтобы не запутаться, в этом и во многих других критериях рекомендуется первым рядом (выборкой, группой) считать тот ряд, где значения выше, а вторым рядом – тот, где значения ниже.
Гипотезы
H0: Уровень признака в выборке 1 не превышает уровня признака в выборке 2.
H1: Уровень признака в выборке 1 превышает уровень признака в выборке 2.
Графическое представление критерия Q
На Рис. 2.2. представлены три варианта соотношения рядов значений в двух выборках. В варианте (а) все значения первого ряда выше всех значений второго ряда. Различия, безусловно, достоверны, при соблюдении условия, что n1, n2≥11.
В варианте (б), напротив, оба ряда находятся на одном и том же уровне: различия недостоверны. В варианте (в) ряды частично перекрещиваются, но все же первый ряд оказывается гораздо выше второго. Достаточно ли велики зоны S1 и S2, в сумме составляющие Q, можно определить по Таблице I Приложения 1, где приведены критические значения Q для разных п. Чем величина Q больше, тем более достоверные различия мы сможем констатировать.
Ограничения критерия Q
1. В каждой из сопоставляемых выборок должно быть не менее 11 наблюдений. При этом объемы выборок должны примерно совпадать. Е.В. Гублером указываются следующие правила:
а) если в обеих выборках меньше 50 наблюдений, то абсолютная величина разности между n1и n2не должна быть больше 10 наблюдений;
б) если в каждой из выборок больше 51 наблюдения, но меньше 100, то абсолютная величина разности между щ и Л2 не должна быть больше 20 наблюдений;
в) если в каждой из выборок больше 100 наблюдений, то допускается, чтобы одна из выборок была больше другой не более чем в 1,5-2 раза (Гублер Е.В., 1978, с. 75).
2. Диапазоны разброса значений в двух выборках должны не совпадать между собой, в противном случае применение критерия бессмысленно. Между тем, возможны случаи, когда диапазоны разброса значений совпадают, но, вследствие разносторонней асимметрии двух распределений, различия в средних величинах признаков существенны (Рис. 2.3., 2.4).
Пример
У предполагаемых участников психологического эксперимента, моделирующего деятельность воздушного диспетчера, был измерен уровень вербального и невербального интеллекта с помощью методики Д. Векслера. Было обследовано 26 юношей в возрасте от 18 до 24 лет (средний возраст 20,5 лет). 14 из них были студентами физического факультета, а 12 – студентами психологического факультета Ленинградского университета (Сидоренко Е.В., 1978). Показатели вербального интеллекта представлены в Табл. 2.1.
Можно ли утверждать, что одна из групп превосходит другую по уровню вербального интеллекта?
Таблица 2.1
Индивидуальные значения вербального интеллекта в выборках студентов физического (n1=14)и психологического (n2=12) факультетов
Студе | нты-физики | Студенты – психологи | |||
| Код имени испытуемого | Показатель вербального интеллекта | Код имени испытуемого | Показатель вербального интеллекта | |
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. | И.А К.А. К.Е. П.А. С.А. Ст.А. Т.А. Ф.А. Ч.И. Ц.А. См.А. К.Ан. Б.Л. Ф.В. | 1. 2. 3. 4. 5. 6. 7. 8. 9. | н.т. о.в. Е.В. Ф.О. и.н. и.ч. и.в. К.О. p.p. Р.И. O.K. н.к. |
Упорядочим значения в обеих выборках, а затем сформулируем гипотезы:
H0: Студенты-физики не превосходят студентов-психологов по уровню вербального интеллекта.
H1: Студенты-физики превосходят студентов-психологов по уровню вербального интеллекта.
Таблица 2.2
Упорядоченные по убыванию вербального интеллекта ряды индивидуальных значений в двух студенческих выборках
Как видно из Табл. 2.2, мы правильно обозначили ряды: первый, тот, что “выше” – ряд физиков, а второй, тот, что “ниже” – ряд психологов.
По Табл. 2.2 определяем количество значений первого ряда, которые больше максимального значения второго ряда: S1=5.
Теперь определяем количество значений второго ряда, которые меньше минимального значения первого ряда: S2=6.
Вычисляем QЭМП по формуле:
QЭМN=S1 S2=5 6=ll
По Табл.II Приложения 1 определяем критические значения Q для n1=14, n2=12:
Ясно, что чем больше расхождения между выборками, тем больше величина Q. Но отклоняется при Qэмп>Qкp, а при Qэмп <Qкp мы будем вынуждены принять Но.
Построим “ось значимости”.
Принимается H1. Студенты-физики превосходят студентов-психологов по уровню вербального интеллекта (р<0,01). Отметим, что в тех случаях, когда эмпирическая величина критерия оказывается на границе зоны незначимости, мы имеем право утверждать лишь, что различия достоверны при р<0,05, если же оно оказывается между двумя критическими значениями, то мы можем утверждать, что р< 0,05.
Если эмпирическое значение критерия оказывается на границе зоны значимости, р<0,01, в зоне значимости – что р<0,01
Поскольку уровень значимости выявленных различий достаточно высок (р<0,01), мы могли бы на этом остановиться. Однако если исследователь сам психолог, а не физик, вряд ли он на этом остановится. Он может попробовать сопоставить выборки по уровню невербального интеллекта, поскольку именно невербальный интеллект определяет уровень интеллекта в целом и степень его организованности (см., например: Бергер М.А., Логинова НА., 1974).
Мы вернемся к этому примеру при рассмотрении критерия Манна-Уитни и попытаемся ответить на вопрос о соотношении уровней невербального интеллекта в двух выборках. Быть может, психологи еще окажутся в более высоком ряду!
АЛГОРИТМ 3
§
1. Проверить, выполняются ли ограничения: n1•n2≥11, n1 n2≈n2Упорядочить значения отдельно в каждой выборке по степени возрастания признака. Считать выборкой 1 ту выборку, значения в которой предположительно выше, а выборкой 2 – ту, где значения предположительно ниже.
3. Определить самое высокое (максимальное) значение в выборке 2.
4. Подсчитать количество значений в выборке 1, которые выше максимального значения в выборке 2. Обозначить полученную величину как S1.
5. Определить самое низкое (минимальное) значение в выборке 1.
6. Подсчитать количество значений в выборке 2, которые ниже минимального значения выборки 1. Обозначить полученную величину как S2.
7. Подсчитать эмпирическое значение Q по формуле: Q=S1 S2-
8. По Табл. I Приложения I определить критические значения Q для данных n1 и n2. Если Qэмп равно Q0,05 или превышает его, Н0 отвергается.
9. При n1•n2>26сопоставить полученное эмпирическое значение с Qкp=8 (р≤0,05) и Qкp=10(p≤0,01). Если Qэмп превышает или по крайней мере равняется Qкp=8, H0 отвергается.
2.3. U– критерий Манна-Уитни
Назначение критерия
Критерий предназначен для оценки различий между двумя выборками по уровню какого-либо признака, количественно измеренного. Он позволяет выявлять различия между малыми выборками, когда n1•n2≥3 или n1=2, n2≥5, и является более мощным, чем критерий Розенбаума.
Описание критерия
Существует несколько способов использования критерия и несколько вариантов таблиц критических значений, соответствующих этим способам (Гублер Е. В., 1978; Рунион Р., 1982; Захаров В. П., 1985; McCall R., 1970; Krauth J., 1988).
Этот метод определяет, достаточно ли мала зона перекрещивающихся значений между двумя рядами. Мы помним, что 1-м рядом (выборкой, группой) мы называем тот ряд значений, в котором значения, по предварительной оценке, выше, а 2-м рядом – тот, где они предположительно ниже.
Чем меньше область перекрещивающихся значений, тем более вероятно, что различия достоверны. Иногда эти различия называют различиями в расположении двух выборок (Welkowitz J. et al., 1982).
Эмпирическое значение критерия U отражает то, насколько велика зона совпадения между рядами. Поэтому чем меньше Uэмп, тем более вероятно, что различия достоверны.
Гипотезы
Н0: Уровень признака в группе 2 не ниже уровня признака в группе 1.
H1: Уровень признака в группе 2 ниже уровня признака в группе 1.
Графическое представление критерия U
На Рис. 2.5. представлены три из множества возможных вариантов соотношения двух рядов значений.
В варианте (а) второй ряд ниже первого, и ряды почти не перекрещиваются. Область наложения слишком мала, чтобы скрадывать различия между рядами. Есть шанс, что различия между ними достоверны. Точно определить это мы сможем с помощью критерия U.
В варианте (б) второй ряд тоже ниже первого, но и область перекрещивающихся значений у двух рядов достаточно обширна. Она может еще не достигать критической величины, когда различия придется признать несущественными. Но так ли это, можно определить только путем точного подсчета критерия U.
В варианте (в) второй ряд ниже первого, но область наложения настолько обширна, что различия между рядами скрадываются.
Ограничения критерия U
1. В каждой выборке должно быть не менее 3 наблюдений: n1•n2≥3; допускается, чтобы в одной выборке было 2 наблюдения, но тогда во второй их должно быть не менее 5.
2. В каждой выборке должно быть не более 60 наблюдений; n1•n2≤60. Однако уже при n1•n2>20 ранжирование становиться достаточно трудоемким.
На наш взгляд, в случае, если n1•n2>20, лучше использовать другой критерий, а именно угловое преобразование Фишера в комбинации с критерием λ,, позволяющим выявить критическую точку, в которой накапливаются максимальные различия между двумя сопоставляемыми выборками (см. п. 5.4). .Формулировка звучит сложно, но сам метод достаточно прост. Каждому исследователю лучше попробовать разные пути и выбрать тот, который кажется ему более подходящим.
Пример
Вернемся к результатам обследования студентов физического и психологического факультетов Ленинградского университета с помощью методики Д. Векслера для измерения вербального и невербального интеллекта. С помощью критерия Q Розенбаума мы в предыдущем параграфе смогли с высоким уровнем значимости определить, что уровень вербального интеллекта в выборке студентов физического факультета выше. Попытаемся установить теперь, воспроизводится ли этот результат при сопоставлении выборок по уровню невербального интеллекта. Данные приведены в Табл. 2.3.
Можно ли утверждать, что одна из выборок превосходит другую по уровню невербального интеллекта?
Таблица 2.3
Индивидуальные значения невербального интеллекта в выборках студентов физического (щ=4) и психологического (п2=12) факультетов
Студенты-физики | Студенты-психологи | ||||
Код имени испытуемого | Показатель невербального интеллекта | Код имени испытуемого | Показатель невербального интеллекта | ||
1. | И.А. | 1. | Н.Т. | ИЗ | |
2. | К.А. | 2. | О.В. | ||
3. | К.Е. | 3. | Е.В. | ||
4. | П.А. | 4. | Ф.О. | ||
5. | С.А. | 5. | И.Н. | ||
6. | Ст.А. | 6. | И.Ч. | ||
7. | Т.А. | 7. | И.В. | ||
8. | Ф.А. | 8. | К.О. | ||
9. | Ч.И. | 9. | P.P. | ||
10. | ЦА. | 10. | Р.И. | ||
11. | См.А. | 11. | O.K. | ||
12. | К.Ан. | 12. | Н.К. | ||
13. | Б.Л. | ||||
14. | Ф.В. |
Критерий U требует тщательности и внимания. Прежде всего, необходимо помнить правила ранжирования.
Правила ранжирования
1. Меньшему значению начисляется меньший ранг. Наименьшему значению начисляется ранг 1.
Наибольшему значению начисляется ранг, соответствующий количеству ранжируемых значений. Например, если n=7, то наибольшее значение получит ранг 7, за возможным исключением для тех случаев, которые предусмотрены правилом 2.
2. В случае, если несколько значений равны, им начисляется ранг, представляющий собой среднее значение из тех рангов, которые они получили бы, если бы не были равны.
Например, 3 наименьших значения равны 10 секундам. Если бы мы измеряли время более точно, то эти значения могли бы различаться и составляли бы, скажем, 10,2 сек; 10,5 сек; 10,7 сек. В этом случае они получили бы ранги, соответственно, 1, 2 и 3. Но поскольку полученные нами значения равны, каждое из них получает средний ранг:
Допустим, следующие 2 значения равны 12 сек. Они должны были бы получить ранги 4 и 5, но, поскольку они равны, то получают средний ранг:
3. Общая сумма рангов должна совпадать с расчетной, которая определяется по формуле:
где N – общее количество ранжируемых наблюдений (значений). Несовпадение реальной и расчетной сумм рангов будет свидетельствовать об ошибке, допущенной при начислении рангов или их суммировании. Прежде чем продолжить работу, необходимо найти ошибку и устранить ее.
При подсчете критерия U легче всего сразу приучить себя действовать по строгому алгоритму.
АЛГОРИТМ 4
§
1. Перенести все данные испытуемых на индивидуальные карточки.
2. Пометить карточки испытуемых выборки 1 одним цветом, скажем красным, а все карточки из выборки 2 – другим, например синим.
3. Разложить все карточки в единый ряд по степени нарастания признака, не считаясь с тем, к какой выборке они относятся, как если бы мы работали с одной большой выборкой.
4. Проранжировать значения на карточках, приписывая меньшему значению меньший ранг. Всего рангов получится столько, сколько у нас (n1 п2).
5. Вновь разложить карточки на две группы, ориентируясь на цветные обозначения: красные карточки в один ряд, синие – в другой.
6. Подсчитать сумму рангов отдельно на красных карточках (выборка 1) и на синих карточках (выборка 2). Проверить, совпадает ли общая сумма рангов с расчетной.
7. Определить большую из двух ранговых сумм.
8. Определить значение U по формуле:
где n1 – количество испытуемых в выборке 1;
n2 – количество испытуемых в выборке 2;
Тх – большая из двух ранговых сумм;
nх – количество испытуемых в группе с большей суммой рангов.
9. Определить критические значения U по Табл. II Приложения 1. Если Uэмп.>Uкp005, Но принимается. Если Uэмп≤Uкp_005, Но отвергается. Чем меньше значения U, тем достоверность различий выше.
Теперь проделаем всю эту работу на материале данного примера. В результате работы по 1-6 шагам алгоритма построим таблицу.
Таблица 2.4
Подсчет ранговых сумм по выборкам студентов физического и психа-логического факультетов
Студенты-физики (n1=14) | Студенты-психологи (n2=12) | |||
Показатель невербального интеллекта | Ранг | Показатель невербального интеллекта | Ранг | |
20,5 | ||||
20,5 | ||||
15,5 | 15.5 | |||
14′ | ||||
11.5 | 11,5 | |||
11,5 | ||||
11,5 | ||||
6.5 | 6,5 | |||
4,5 | 4,5 | |||
Суммы | ||||
Средние | 107,2 | 111,5 |
Общая сумма рангов: 165 186=351. Расчетная сумма:
Равенство реальной и расчетной сумм соблюдено.
Мы видим, что по уровню невербального интеллекта более “высоким” рядом оказывается выборка студентов-психологов. Именно на эту выборку приходится большая ранговая сумма: 186.
Теперь мы готовы сформулировать гипотезы:
H0: Группа студентов-психологов не превосходит группу студентов-физиков по уровню невербального интеллекта.
Н1: Группа студентов-психологов превосходит группу студентов-физиков по уровню невербального интеллекта.
В соответствии со следующим шагом алгоритма определяем эмпирическую величину U:
Поскольку в нашем случае пФп2, подсчитаем эмпирическую величину U и для второй ранговой суммы (165), подставляя в формулу соответствующее ей пх:
Такую проверку рекомендуется производить в некоторых руководствах (Рунион Р., 1982; Greene J., D’Olivera M., 1989). Для сопоставления с критическим значением выбираем меньшую величину U: Uэмп=60.
По Табл. II Приложения 1 определяем критические значения для n1=14, n2=12.
Мы помним, что критерий U является одним из двух исключений из общего правила принятия решения о достоверности различий, а именно, мы можем констатировать достоверные различия, если Uэмп≤Uкp
Построим “ось значимости”.
Uэмп=60
Uэмп>Uкp
Ответ: H0 принимается. Группа студентов-психологов не превосходит группы студентов-физиков по уровню невербального интеллекта.
Обратим внимание на то, что для данного случая критерий Q Розенбаума неприменим, так как размах вариативности в группе физиков шире, чем в группе психологов: и самое высокое, и самое низкое значение невербального интеллекта приходится на группу физиков (см. Табл. 2.4).
§
Назначение критерия
Критерий предназначен для оценки различий одновременно между тремя, четырьмя и т.д. выборками по уровню какого-либо признака.
Он позволяет установить, что уровень признака изменяется при переходе от группы к группе, но не указывает на направление этих изменений.
Описание критерия
Критерий Н иногда рассматривается как непараметрический аналог метода дисперсионного однофакторного анализа для несвязных выборок (Тюрин Ю. Н., 1978). Иногда его называют критерием “суммы рангов” (Носенко И.А., 1981).
Данный критерий является продолжением критерия U на большее, чем 2, количество сопоставляемых выборок. Все индивидуальные значения ранжируются так, как если бы это была одна большая выборка. Затем все индивидуальные значения возвращаются в свои первоначальные выборки, и мы подсчитываем суммы полученных ими рангов отдельно по каждой выборке. Если различия между выборками случайны, суммы рангов не будут различаться сколько-нибудь существенно, так как высокие и низкие ранги равномерно распределятся между выборками. Но если в одной из выборок будут преобладать низкие значения рангов, в другой – высокие, а в третьей – средние, то критерий Н позволит установить эти различия.
Гипотезы
H0: Между выборками 1, 2, 3 и т. д. существуют лишь случайные различия по уровню исследуемого признака.
Н1: Между выборками 1, 2, 3 и т. д. существуют неслучайные различия по уровню исследуемого признака.
Графическое представление критерия Н
Критерий Н оценивает общую сумму перекрещивающихся зон при сопоставлении всех обследованных выборок. Если суммарная область наложения мала (Рис. 2.6 (а)), то различия достоверны; если она достигает определенной критической величины и превосходит ее (Рис. 2.6 (б)), то различия между выборками оказываются недостоверными.
Рис. 2.6. 2 возможных варианта соотношения рядов значений в трех выборках; штриховкой отмечены зоны наложения
Ограничения критерия Н
1. При сопоставлении 3-х выборок допускается, чтобы в одной из них п—Ъ, а двух других n=2. Но при таких численных составах выборок мы сможем установить различия лишь на низшем уровне значимости (р≤0,05).
Для того, чтобы оказалось возможным диагностировать различия на более высоком уровнем значимости (р5~0,01), необходимо, чтобы в каждой выборке было не менее 3 наблюдений, или чтобы по крайней мере в одной из них было 4 наблюдения, а в двух других – по 2; при этом неважно, в какой именно выборке сколько испытуемых, а важно соотношение 4:2:2.
2. Критические значения критерия Н и соответствующие им уровни значимости приведены в Табл. IV Приложения 1. Таблица предусмотрена только для трех выборок и {n1, n2, n3}≤5.
При большем количестве выборок и испытуемых в каждой выборке необходимо пользоваться Таблицей критических значений критерия χ2, поскольку критерий Крускала-Уоллиса асимптотически приближается к распределению χ2 (Носенко И.А., 1981; J. Greene, M. D’Olivera, 1982).
Количество степеней свободы при этом определяется по формуле: V=c-1 где с – количество сопоставляемых выборок.
3. При множественном сопоставлении выборок достоверные различия между какой-либо конкретной парой (или парами) их могут оказаться стертыми. Это ограничение можно преодолеть, если провести все возможные попарные сопоставления, число которых будет равняться ½·[c·(c-1)]*[6] таких попарных сопоставлений используется, естественно, критерий для двух выборок, например U или φ*.
Пример
В эксперименте по исследованию интеллектуальной настойчивости (Е. В. Сидоренко, 1984) 22 испытуемым предъявлялись сначала разрешимые четырехбуквенные, пятибуквенные и шестибуквенные анаграммы, а затем неразрешимые анаграммы, время работы над которыми не ограничивалось. Эксперимент проводился индивидуально с каждым испытуемым. Использовалось 4 комплекта анаграмм. У исследователя возникло впечатление, что над некоторыми неразрешимыми анаграммами испытуемые продолжали работать дольше, чем над другими, и, возможно, необходимо будет делать поправку на то, какая именно неразрешимая анаграмма предъявлялась тому или иному испытуемому. Показатели длительности попыток в решении неразрешимых анаграмм представлены в Табл. 2.5. Все испытуемые были юношами-студентами технического вуза в возрасте от 20 до 22 лет.
Можно ли утверждать, что длительность попыток решения каждой из 4 неразрешимых анаграмм примерно одинакова?
Таблица 2.5
Показатели длительности попыток решения 4 неразрешимых анаграмм в секундах (7V=22)
Группа 1: анаграмма | Группа 2: анаграмма | Группа 3: анаграмма | Группа 4: анаграмма | |
ФОЛИТОН (n1=4) | КАМУСТО (n2=8) | СНЕРАКО (n3=6) | ГРУТОСИЛ (n4=4) | |
Суммы | ||||
Средние |
Сформулируем гипотезы.
H0: 4 группы испытуемых, получившие разные неразрешимые анаграммы, не различаются по длительности попыток их решения.
H1: 4 группы испытуемых, получившие разные неразрешимые анаграммы, различаются по длительности попыток их решения.
Теперь познакомимся с алгоритмом расчетов.
§
1. Перенести все показатели испытуемых на индивидуальные карточки.
2. Пометить карточки испытуемых группы 1 определенным цветом, например красным, карточки испытуемых группы 2 – синим, карточки испытуемых групп 3 и 4 – соответственно, зеленым и желтым цветом и т. д. (Можно использовать, естественно, и любые другие обозначения.)
3. Разложить все карточки в единый ряд по степени нарастания признака, не считаясь с тем, к какой группе относятся карточки, как если бы мы работали с одной объединенной выборкой.
4. Проранжировать значения на карточках, приписывая меньшему значению меньший ранг. Надписать на каждой карточке ее ранг. Общее количество рангов будет равняться количеству испытуемых в объединенной выборке.
5. Вновь разложить карточки по группам, ориентируясь на цветные или другие принятые обозначения.
6. Подсчитать суммы рангов отдельно по каждой группе. Проверить совпадение общей суммы рангов с расчетной.
7. Подсчитать значение критерия Н по формуле:
где N – общее количество испытуемых в объединенной выборке;
n – количество испытуемых в каждой группе;
Т – суммы рангов по каждой группе.
8а. При количестве групп с=3, n1•n2•n3≤5определить критические значения и соответствующий им уровень значимости по Табл. IV Приложения 1.
Если Нэмп равен или превышает критическое значение H0,05, H0 отвергается.
8б. При количестве групп с>3 или количестве испытуемых n1•n2•n3>5, определить критические значения χ2по Табл. IX Приложения 1.
Если Нэмп равен или превышает критическое значение χ2, H0 отвергается.
Воспользуемся этим алгоритмом при решении задачи о неразрешимых анаграммах. Результаты работы по 1-6 шагам алгоритма представлены в Табл. 2.6.
Таблица 2.6
Подсчет ранговых сумм по группам испытуемых, работавших над четырьмя неразрешимыми анаграммами
Группа 1: анаграмма ФОЛИТОЫ (n1=4) | Группа 2: анаграмма КАМУСТО (n2=8) | Группа 3: анаграмма СНЕРАКО (n3=6) | Группа 4: анаграмма ГРУТОСИЛ (n4=4) | |||||
Длительность | Ранг | Длительность | Ранг | Длительность | Ранг | Длительность | Ранг | |
3.5 | 3.5 | |||||||
Суммы | 38,5 | 82,5 | ||||||
Средние | 9,6 | 10,3 | 11,3 | 16,0 |
Общая сумма рангов =38,5 82,5 68 64=253. Расчетная сумма рангов:
Равенство реальной и расчетной сумм соблюдено.
Поскольку таблицы критических значений критерия Н предусмотрены только для количества групп с = 3, а в данном случае у нас 4 группы, придется сопоставлять полученное эмпирическое значение Н с критическими значениями у}. Для этого вначале определим количество степеней свободы V для c=4:
v=c- 1 = 4 – 1 = 3
Теперь определим критические значения по Табл. IX Приложения 1 для v=3:
Ответ: Н0 принимается: 4 группы испытуемых, получившие разные неразрешимые анаграммы, не различаются по длительности попыток их решения.
2.5. S– критерий тенденций Джонкира
Описание этого критерия дается с использованием руководства J.Greene, M.D’Olivera (1982). Он описан также у М. Холлендера, Д.А. Вулфа (1983).
Назначение критерия S
Критерий S предназначен для выявления тенденций изменения признака при переходе от выборки к выборке при сопоставлении трех и более выборок.
Описание критерия S
Критерий S позволяет нам упорядочить обследованные выборки по какому-либо признаку, например, по креативности, фрустрационной толерантности, гибкости и т.п.
Мы сможем утверждать, что на первом месте по выраженности исследуемого признака стоит выборка, скажем, Б, на втором – А, на третьем – В и т.д. Интерпретация полученных результатов будет зависеть от того, по какому принципу были образованы исследуемые выборки. Здесь возможны два принципиально отличных варианта.
1) Если обследованы выборки, различающиеся по качественным признакам (профессии, национальности, месту работы и т. п.), то с помощью критерия S мы сможем упорядочить выборки по количественно измеряемому признаку (креативности, фрустрационной толерантности, гибкости и т.п.).
2) Если обследованы выборки, различающиеся или специально сгруппированные по количественному признаку (возрасту, стажу работы, социометрическому статусу и др.), то, упорядочивая их теперь уже по другому количественному признаку, мы фактически устанавливаем меру связи между двумя количественными признаками. Например, мы можем показать с помощью критерия S, что при переходе от младшей возрастной группы к старшей фрустрационная толерантность возрастает, а гибкость, наоборот, снижается.
Меру связи между количественно измеренными переменными можно установить с помощью вычисления коэффициента ранговой корреляции или линейной корреляции (см. Главу 6). Однако критерий тенденций S имеет следующие преимущества перед коэффициентами корреляции:
а) критерий тенденций S более прост в подсчете;
б) он применим и в тех случаях, когда один из признаков варьирует в узком диапазоне, например, принимает всего 3 или 4 значения, в то время как при подсчете ранговой корреляции в этом случае мы получаем огрубленный результат, нуждающийся в поправке на одинаковые ранги.
Критерий S основан на способе расчета, близком к принципу критерия Q Розенбаума. Все выборки располагаются в порядке возрастания исследуемого признака, при этом выборку, в которой значения в общем ниже, мы помещаем слева, выборку, в которой значения выше, правее, и так далее в порядке возрастания значений. Таким образом, все выборки выстраиваются слева направо в порядке возрастания значений исследуемого признака.
При упорядочивании выборок мы можем опираться на средние значения в каждой выборке или даже на суммы всех значений в каждой выборке, потому что в каждой выборке должно быть одинаковое 1 количество значений. В противном случае критерий S неприменим j (подробнее об этом см. в разделе “Ограничения критерия S”).
Для каждого индивидуального значения подсчитывается ко-личество значений справа, превышающих его по величине. Если тенденция возрастания признака слева направо существенна, то большая [часть значений справа должна быть выше. Критерий S позволяет определить, преобладают ли справа более высокие значения или нет. Статистика S отражает степень этого преобладания. Чем выше эмпирическое [значение S, тем тенденция возрастания признака является более существенной.
Следовательно, если Sэмп равняется критическому значению или превышает его, нулевая гипотеза может быть отвергнута.
Гипотезы
Н0: Тенденция возрастания значений признака при переходе от выборки к выборке является случайной.
H1: Тенденция возрастания значений признака при переходе от выборки к выборке не является случайной.
§
Фактически критерий S позволяет определить, достаточно ли ве-& лика суммарная зона неперекрещивающихся значений в сопоставляемых (выборках: действительно ли в первом ряду значения в общем ниже, чем 1в последующих, во втором – ниже, чем в оставшихся справа последующих и т. д.
Графически это представлено на Рис. 2.7.
На Рис. 2.7(а) у сопоставляемых рядов значений есть непере* 1крещивающиеся зоны, но их суммарная площадь может оказаться 1 слишком небольшой, чтобы признать тенденцию возрастания признака | существенной.
На рис. 2.7(6) сумма неперекрещивающихся зон, по-видимому, достаточно велика, чтобы тенденция возрастания признака была признана достоверной. Точно определить это мы сможем лишь с помощью критерия S.
Ограничения критерия S
1. В каждой из сопоставляемых выборок должно быть одинаковое число наблюдений. Если число наблюдений неодинаково, то придется искусственно уравнивать выборки, утрачивая при этом часть полученных наблюдений.
Например, если в двух выборках по 7 наблюдений, а в третьей – И, то 4 из них необходимо отсеять. Для этого карточки с индивидуальными значениями переворачиваются лицевой стороной вниз и перемешиваются, а затем из них случайным образом извлекается 7 карточек. Оставшиеся 4 карточки с индивидуальными значениями не включаются в дальнейшее рассмотрение и в подсчет критерия S. Ясно, что при таком подходе часть информации утрачивается, и общая картина может быть искажена.
Если исследователь хочет избежать этого, ему следует воспользоваться критерием Н, позволяющим выявить различия между тремя и более выборками без указания на направление этих различий (см. параграф 2.4).
2. Нижний порог: не менее 3 выборок и не менее 2 наблюдений в каждой выборке. Верхний порог в существующих таблицах: не более 6 выборок и не более 10 наблюдений в каждой выборке (см. Табл. III Приложения 1 для определения критических значений S). При большем количестве выборок или наблюдений в них придется пользоваться критерием Н Крускала-Уоллиса.
Пример
Выборка претендентов на должность коммерческого директора в Санкт-Петербургском филиале зарубежной фирмы была обследована с помощью Оксфордской методики экспресс-видеодиагностики, использующей диагностические ролевые игры. Были обследованы 20 мужчин в возрасте от 25 до 40 лет, средний возраст 31,5 года. Оценки производились по 15 значимым, с точки зрения зарубежной фирмы, психологическим качествам, обеспечивающим эффективную деятельность на посту коммерческого директора. Одним из этих качеств была “Авторитетность”. В конце 8-часового сеанса диагностических ролевых игр и упражнений проводился социометрический опрос участников группы, в котором они должны были ответить на вопрос: “Если бы я сам был представителем фирмы, я выбрал бы на должность коммерческого директора: 1)…. 2)…. 3)….” Участники знали, что каждый их шаг является материалом для диагностики, и что в данном случае, в частности, проверяется, помимо прочего, их способность к объективному суждению о людях. В результате этой процедуры каждый участник получил то или иное количество выборов от других участников, отражающее его социометрический статус в группе претендентов.
Результаты исследования представлены в Табл. 2.7 (данные Е. В. Сидоренко, И. В. Дермановой, 1991).
Можно ли считать, что группы с разным статусом различаются и по уровню авторитетности, определявшейся независимо от социометрии с помощью экспресс-видеодиагностики?
Таблица 2.7
Показатели по шкале Авторитетности в группах с разным социометрическим статусом (N=20)
Номера испытуемых | Группа 1: 0 выборов (n1=5) | Группа 2: 1 выбор (n2=5) | Группа 3: 2-3 выбора (n3=5) | Группа 4: 4 и более выборов (n4=5) |
Суммы | ||||
Средние | 4,2 | 5,6 | 6,0 | 8,2 |
Сформулируем гипотезы.
H0: Тенденция повышения значений по шкале Авторитетности при переходе от группы к группе (слева направо) случайна.
Н1: Тенденция повышения значений по шкале Авторитетности при переходе от группы к группе (слева направо) неслучайна.
Для того, чтобы нам было удобнее подсчитывать количества более высоких значений (S1), лучше упорядочить значения в каждой группе по их возрастанию (Табл. 2.8).
Таблица 2.8
Расчет критерия S при сопоставлении групп с разным социометрическим статусом по показателю Авторитетности (N=20)
Места испытуемых | Группа 1: 0 выборов (n1=5) | Группа 2: 1 выбор (n2=5) | Группа 3: 2-3 выбора (n3=5) | Группа 4[7]: 4 и более выбором (n4=5) | |||
| Индивидуальные значения | Si | Индивидуальные значения | Si | Индивидуальные значения | Si | Индивидуальные значения |
(15) (14) (11) (11) (11) | (10) (8) (7) (7) (4) | (5) (5) (5) (4) (4) | |||||
Суммы | (62) | (36) | (23) |
После того, как все индивидуальные значения расположены в порядке возрастания, легко подсчитать, сколько значений справа превышают данное значение слева. Начнем с крайнего левого столбца. Значение “2” превышают все 15 значений из трех правых столбцов; значение “4” – 14 значений из трех правых столбцов; значение “5” превышают 11 значений из трех правых столбцов. Полученные количества “превышений” запишем в скобках слева от каждого индивидуального значения, как это сделано в Табл. 2.8.
Расчет для второго столбца производим по тому же принципу. Мы видим, что значение “4” превышают все 10 значений из оставшихся столбцов справа; значение “5” – 8 значений из столбцов справа и т.д.
Сумма всех чисел в скобках (Si) составит величину А, которую нам нужно будет подставить в формулу для подсчета критерия S. Однако вначале определим максимально возможное значение А, которое мы получили бы, если бы все значения справа были больше значений слева. Эта величина называется величиной В и вычисляется по формуле:
где с – количество столбцов (групп);
п – количество испытуемых в каждом столбце (группе). В данном случае:
Эмпирическое значение критерия S вычисляется по формуле:
S = 2·А – В
где А – сумма всех “превышений” по всем значениям;
В – максимально возможное количество всех “превышений”.
В данном случае:
По Табл. III Приложения 1 определяем критические значения S для с=4, n=5:
Построим “ось значимости”.
Мы помним, что критерий S построен на подсчете количества превышающих значений. Чем это количество больше, тем более достоверные различия мы сможем констатировать. Поэтому “зона значимости” простирается вправо, в область более высоких значений, а “зона незначимости” – влево, в область более низких значений.
Sэмп>Sкp. (p ≤0,01)
Ответ: H0 отвергается. Принимается H1. Тенденция повышения значений по шкале Авторитетности при переходе от группы к группе не случайна (р<0,01).
Отвечая на вопрос задачи, мы можем сказать, что группы с разным статусом различаются по показателю Авторитетности, определявшемуся независимо от социометрической процедуры. Критерий S позволяет указать на тенденцию этих изменении: с ростом статуса растут и показатели по шкале Авторитетности. Однако мы имеем дело здесь, конечно же, не с причинно-следственными связями, а с сопряженными изменениями двух признаков. Возможно, оба они изменяются под влиянием одних и тех же общих факторов, например, последовательно проявляющейся в поведении привычки к лидерству, внушающей способности или “харизмы”.
Теперь мы можем суммировать все сказанное, алгоритмизировав процесс подсчета критерия S.
§
В психологических исследованиях часто бывает важно доказать, что в результате действия каких-либо факторов произошли достоверные изменения (“сдвиги”) в измеряемых показателях. К числу таких факторов должен быть отнесен прежде всего фактор времени. Сопоставление показателей, полученных у одних и тех же испытуемых по одним и тем же методикам, но в разное время, дает нам временной сдвиг.
Многократные обследования одних и тех же лиц на протяжении достаточно длительного отрезка их жизненного пути, измеряемого иногда десятками лет, представляет собой так называемое лонгитюдинальное исследование, суть которого хорошо известна любому представителю Ленинградской-Петербургской школы психологии. Этот метод позволяет определить генетические связи между фазами психического развития и дать научно обоснованный прогноз дальнейшего психического развития (Ананьев Б.Г., 1976, с. 26-27).
Сопоставление показателей, полученных по одним и тем же методикам, но в разных условиях измерения (например, “покоя” и “стресса”), дает нам ситуационный сдвиг. Условия измерения могут изменяться не только реально, но и умозрительно. Например, мы можем попросить испытуемого “представить себе”, что он оказался в других условиях измерения: в будущем, в позиции других людей, которые оценивают его как бы со стороны, в состоянии разгневанного отца и т. п. Сопоставляя показатели, измеренные в обычных и воображаемых условиях, мы получаем умозрительный сдвиг.
Мы можем создать специальные экспериментальные условия, предположительно влияющие на те или иные показатели, и сопоставить замеры, произведенные до и после экспериментального воздействия. Если сдвиги окажутся статистически достоверными, это позволит нам утверждать, что экспериментальные воздействия были существенными, или эффективными.
Например, мы можем сделать вывод о том, что данная программа тренинга действительно способствует развитию уверенности, или что данный способ внушающего воздействия влияет на изменение отношения испытуемых к той или иной проблеме, или что психодраматическая замена ролей подтверждает постулат Дж.Л. Морено о сближении позиций спорщиков после того, как им пришлось играть роль своего оппонента и т.п.
Во всех этих случаях мы говорим о сдвиге под влиянием контролируемых или не контролируемых воздействий. И здесь мы наталкиваемся на методическую трудность, которую оказывается возможным преодолеть только путем введения контрольной группы, которая не испытывала бы на себе воздействия данного экспериментального фактора. Если нет контрольной группы, то сдвиг в экспериментальной группе может объясняться действием самых разных причин: временем суток, в которое производились замеры, важным для испытуемых событием, которое произошло между 1-м и 2-м замерами и по мощности воздействия значительно перекрыло экспериментальный фактор и т. п. Мы никогда не сможем исключить той возможности, что изменения, достигнутые, как нам кажется, в результате наших воздействий, на самом деле объясняются неучтенными причинами. Вот если в экспериментальной группе сдвиги окажутся достоверными, ав контрольной группе – недостоверными, то это, действительно, может свидетельствовать об эффективности воздействий. При отсутствии контрольной группы мы констатируем, что сдвиг произошел, но не имеем права приписать его именно данным, изучаемым нами, факторам воздействия.
Допустим, мы установили, что после того, как двум конфликтующим подгруппам пришлось играть роль своих оппонентов в споре, усилилось ощущение понимания этих оппонентов “изнутри” (см. Задачу 1). Но мы не можем исключить возможности, что если бы мы не проводили психодраматической замены ролей, взаимопонимание все-таки бы улучшилось просто в силу того, что обе подгруппы какое-то время учились и работали вместе.
Бывают случаи, когда мы не располагаем контрольной группой, но зато в нашем распоряжении есть 2 или более экспериментальных групп, различающихся по условиям и способам воздействия на них. Это могут быть, помимо экспериментальных, и разнообразные естественные условия жизни, обучения, работы, общения и даже питания, водоснабжения, географического расположения и т. д. Сопоставление групп, различающихся по этим признакам, позволит нам уточнить’ специфическое действие экспериментальных или естественно действующих факторов, хотя при этом нам следует помнить, что воздействие неучтенных факторов может оказаться еще более мощным.
В выводах мы все-таки будет ограничены, если не проверили свои результаты на контрольной труппе, в которой измерения производились параллельно.
Помимо рассмотренных сдвигов: временных, ситуационных, умозрительных и сдвигов под влиянием, – можно рассмотреть еще особую категорию структурных сдвигов.
Мы можем сопоставлять между собой разные показатели одних и тех же испытуемых, если они измерены в одних и тех же единицах, по одной и той же шкале. Например, мы можем исследовать перепад между вербальным и невербальным интеллектом, измеренными по методике Д. Векслера, или сопоставлять экспертные оценки эмпатичности и наблюдательности, измеренные по одинаковой 10-балльной шкале, или время решения двух задач, измеренное в секундах, или экзаменационную успешность по разным дисциплинам и т.п.
В принципе, мы могли бы для такого рода “перепадов” использовать критерии оценки достоверности в средних тенденциях для независимых выборок: U – критерий, Q – критерий и угловое преобразование Фишера. Однако, строго говоря, перед нами – зависимые ряды значений, поскольку они измерены на одних и тех же испытуемых, поэтому будет более обоснованным использовать критерии оценки достоверности сдвигов для связанных выборок. Исключение представляют случаи, когда мы сопоставляем величины сдвигов в двух независимых группах испытуемых, например экспериментальной и контрольной (см. Табл. 3.1). Допустим, если мы установили, что положительный сдвиг в сторону улучшения взаимопонимания наблюдается и в экспериментальной, и в контрольной группах, мы можем попробовать доказать, что в экспериментальной группе этот сдвиг достоверно больше, чем в контрольной, и что, следовательно, экспериментальное воздействие все-таки существенно.
Последний важный вопрос касается того, должны ли мы всегда производить оба замера на одной и той же выборке, или “сдвиг” можно изучать на сходных, так называемых “уравновешенных” выборках, совпадающих друг с другом по полу, возрасту, профессии и другим значимым для исследователя характеристикам.
В сущности, допускается сопоставление показателей разных выборок, уравновешенных по всем значимым для исследования признакам. Иными словами, можно уровень тревоги или объем внимания до экзамена измерять у одной подгруппы, а после экзамена – у другой подгруппы, если они “уравновешены”. Опыт показывает, однако, что создать “уравновешенные” подгруппы практически невозможно. Мы всегда упираемся в факт существования различий между выделенными подгруппами, которые могут в значительной степени повлиять на результат. В итоге окажется, что мы исследовали не влияние экзаменационного стресса на уровень тревоги или объем внимания, а различия по этому показателю между двумя выделенными подгруппами. К сожалению, в значительной степени это относится и к проблеме сопоставления экспериментальной и контрольной групп: мы почти никогда не можем быть уверены, что выявленные различия объясняются действием исследуемых факторов, а не различиями между двумя выборками.
Многие исследователи обходят эту проблему самым простым образом: они вообще не заботятся о контрольной группе. Сдвиг есть -значит, воздействие эффективно! И действительно, при отсутствии контрольной выборки тоже можно порассуждать на тему о том, какими же причинами, кроме предполагаемой, могут объясняться полученные сдвиги…
Другой вариант “уравновешивания” – введение параллельных форм теста. В тех случаях, когда на результатах повторных замеров могут сказаться эффекты научения, приходится “до” измерять реакции испытуемого с помощью одного инструмента, а “после” – с помощью другого. В результате на измерениях может отразиться и действие фактора времени, и различия в параллельных формах теста, и непонятно что еще. Создать параллельную форму методики не менее трудно, чем подобрать “уравновешенную” группу испытуемых. И все же, в тех случаях, когда у нас нет другого выхода, приходится прибегать к этому способу.
Суммируем сказанное. В Табл. 3.1 приведена классификация сдвигов и указаны статистические методы, позволяющие оценить их достоверность.
Таблица ЗА
Классификация сдвигов и критериев оценки их статистической достоверности
Виды сдвигов | Объект сопоставлений | Условия | Критерии оценки достоверности сдвига | |
Количество замеров | Количество групп | |||
1. Временные, ситуационные, умозрительные, измерительные | Одни и те же пок- затели, измеренные у одних и тех же испытуемых в разное время, в разных ситуациях в разных представляемых условиях или разными способами | G – критерий знаков; Т – критерий Вилкоксона | ||
Зи более | | L – критерий тенденций Пей- джа; χ2r– критерий Фридмана | ||
2. Сдвига под влиянием эксперименталь-ных воздействий | Одни и те же показатели, измеренные у одних и тех же испытуемых до и после воздействия: а) при отсутствии контрольной группы |
|
| G – критерий знаков; Т – критерий Вилкоксона |
3 и более | | L – критерий тенденций Пей- джа; χ2r– критерий Фридмана | ||
6) при наличии контрольной группы | | | Вариант 1- сопоставление значений “до” и “после” отдельно по экспериментальной и контрольной группам: G – критерий знаков; Т – критерий Вилкоксона Вариант 2 – сопоставление сдвигов в двух группах: Q – критерий; U – критерий Манна-Уитни; φ* – критерий Фишера | |
| | З и более | Сопоставление значений отдельно по экспериментальной и контрольной группам: L, – критерий тенденций Пейджа; χ2, – критерий Фридмана | |
3. Структурные сдвиги | Разные показатели одних и тех же испытуемых | | | G – критерий знаков; Т – критерий Вилкоксона |
З и более | | L – критерий тенденций Пейджа; χ2r– критерий Фридмана |
Как следует из Табл. 3.1, при сопоставлении двух, замеров, произведенных на одной и той же (экспериментальной) выборке, применяются критерии знаков G и критерий Т Вилкоксона. При сопоставлении трех и более замеров, произведенных на одной и той же выборке, применяются критерий тенденций L Пейджа, а если он неприменим из-за большого объема выборок – критерий χ2rФридмана.
В тех случаях, когда мы хотим оценить различия в интенсивности сдвига в двух группах испытуемых (контрольной и экспериментальной или двух экспериментальных), мы можем использовать различные варианты сопоставлений: 1) производить сопоставления отдельно в двух группах, используя критерии L и χ2r; 2) сопоставлять показатели сдвига[8] в двух группах. Поскольку группы независимы, значения сдвигов также независимы, и мы можем применять по отношению к ним уже известные нам критерии Q Розенбаума, U Манна-Уитни и φ* -угловое преобразование Фишера.
G- критерий знаков
Назначение критерия G
Критерий знаков[9] G предназначен для установления общего направления сдвига исследуемого признака.
Он позволяет установить, в какую сторону в выборке в целом изменяются значения признака при переходе от первого измерения ко второму: изменяются ли показатели в сторону улучшения, повышения или усиления или, наоборот, в сторону ухудшения, понижения или ослабления.
Описание критерия G
Критерий знаков применим и к тем сдвигам, которые можно определить лишь качественно (например, изменение отрицательного отношения к чему-либо на положительное), так и к тем сдвигам, которые могут быть измерены количественно (например, сокращение времени работы над заданием после экспериментального воздействия).
Во втором случае, однако, если сдвиги варьируют в достаточно широком диапазоне, лучше применять критерий Т Вилкоксона. Он учитывает не только направление, но и интенсивность сдвигов и может оказаться более мощным в определении достоверности сдвигов, чем критерий знаков.
Как правило, исследователь уже в процессе эксперимента может заметить, что у большинства испытуемых показатели во втором замере имеют тенденцию, скажем, повышаться. Однако ему еще требуется доказать, что положительный сдвиг является преобладающим.
Для начала мы назовем сдвиги, которые нам кажутся преобладающими, типичными сдвигами, а сдвиги более редкого, противоположного направления, нетипичными. Если значения показателя повышаются у большего количества испытуемых, то этот сдвиг мы будем считать типичным. Если мы исследуем отношение испытуемых к какому-либо событию или предложению, и после экспериментальных воздействий у большинства испытуемых отрицательное отношение сменилось на положительное, то этот сдвиг мы назовем типичным.
Есть еще, правда, возможность “нулевых” сдвигов, когда реакция не изменяется или показатели не повышаются и не понижаются, а остаются на прежнем уровне. Однако такие “нулевые” сдвиги в критерии знаков исключаются из рассмотрения. При этом количество сопоставляемых пар уменьшается на число таких “нулевых” сдвигов.
Суть критерия знаков состоит в том, что он определяет, не слишком ли много наблюдается “нетипичных сдвигов”, чтобы сдвиг в “типичном” направлении считать преобладающим? Ясно, что чем меньше “нетипичных сдвигов”, тем более вероятно, что преобладание “типичного” сдвига является преобладающим. Gэмп – это количество “нетипичных” сдвигов. Чем меньше Gэмп, тем более вероятно, что сдвиг в “типичном” направлении статистически достоверен.
Гипотезы
Н0: Преобладание типичного направления сдвига является случайным.
H1: Преобладание типичного направления сдвига не является случайным.
§
На Рис. 3.1″типичные” сдвиги изображены в виде светлого облака, а нетипичные сдвиги – темного облака. Мы видим, что на рисунке темное облако значительное меньше. Допустим, после выступления оратора большинство слушателей изменили свое отрицательное отношение к какому-то предложению на положительное. Вместе с тем, часть слушателей изменила свое положительное отношение на отрицательное, проявив “нетипичную” реакцию. Критерий знаков позволяет определить, не слишком ли значительная часть слушателей нетипично прореагировала на выступление оратора? Поглощает ли масса светлого облака небольшое темное облако?
В Таблице V Приложения 1 даны критические значения критерия знаков для разных п. Поскольку критерий знаков представляет собой одно из трех исключений из общего правила, представим обобщенную “ось значимости” для этого критерия графически (Рис. 3.2)
Зона значимости простирается влево, в сторону более низких значений, поскольку чем меньше “нетипичных” знаков, тем достовернее “типичный” сдвиг. Зона незначимости, напротив, простирается вправо, в сторону более высоких значений G. Постепенно “нетипичных” сдвигов становится так много, что теряется само ощущение какого-то преобладания в направленности сдвигов. Зона незначимости характеризует ситуацию, когда сдвиги обоих направлений перемешаны.
Ограничения критерия знаков
Количество наблюдений в обоих замерах – не менее 5 и не более 300.
Пример
В исследовании Г.А. Бадасовой (1994) изучались личностные факторы суггестора, способствующие его внушающему воздействию на аудиторию. В эксперименте участвовало 39 слушателей колледжа и спецфакультета практической психологии Санкт-Петербургского университета 9 мужчин и 30 женщин в возрасте от 18 до 39 лет, средний возраст 23,5 года. Испытуемые выступали в качестве суггерендов, т.е. лиц, по отношению к которым оказывалось внушающее воздействие.
В экспериментальной группе (n1=16) испытуемые просматривали видеозапись речи суггестора о целесообразности применения физических наказаний в воспитании детей, а в контрольной группе (n2=23) испытуемые просто читали про себя письменный текст. Содержание речи суггестора и текста полностью совпадали.
До и после предъявления видеозаписи (в экспериментальной группе) и текста (в контрольной группе) испытуемые отвечали на 4 вопроса, оценивая степень согласия с их содержанием по 7-балльной шкале:
1. Я считаю возможным иногда шлепнуть своего ребенка за дело, если
он этого заслужил:
Несогласен 1 2 3 4 5 6 7 Согласен
2. Если, придя домой, я узнаю, что кто-то из близких, бабушка или дедушка, шлепнул моего ребенка за дело, то я буду считать, что это нормально:
Несогласен 1 2 3 4 5 6 7 Согласен
3. Если мне станет известно, что воспитательница детского сада или учительница в школе шлепнула моего ребенка за дело, то я восприму это как должное:
Несогласен 1 2 3 4 5 6 7 Согласен
4. Я бы согласился отдать своего ребенка в школу, где применяется
система физических наказаний по итогам недели:
Несогласен 1 2 3 4 5 6 7 Согласен
Суггестор был подобран по признакам, которые были выявлены в пилотажном исследовании (Бадасова Г. А., 1994). Результаты двух замеров по обеим группам представлены в Табл. 3.2 и Табл. 3 3
Таблица 3.2
Оценки степени согласия с утверждениями о допустимости телесных наказаний до и после предъявления видеозаписи в экспериментальной группе (n1=16)
Оценки и сдвиги оценок (“после” – “до”) по шкалам | ||||||||||||
№ | “Я сам” | “Бабушке” | “Воспитатель” | Школа | ||||||||
п/п | до | после | сдвиг | до | после | сдвиг | до | после | сдвиг | до | после | сдвиг |
2 | ||||||||||||
1 | 1 | 1 | ||||||||||
1 | 1 | |||||||||||
1 | ||||||||||||
1 | 1 | -1 | ||||||||||
1 | 2 | 1 | ||||||||||
1 | 1 | -1 | ||||||||||
-1 | ||||||||||||
2 | ||||||||||||
1 | 1 | 1 | ||||||||||
1 | 1 | -1 | ||||||||||
1 | 1 |
Таблица 3.3
Оценки степени согласия с утверждениями о допустимости телесных наказаний до и после предъявления письменного текста в контрольной группе (n2=23)
Оценки и сдвиги оценок (после – “до”) по шкалам | ||||||||||||
№ | “Я сам” | “Бабушка | “Воспитатель” | Школа | ||||||||
п/п | до | после | сдвиг | ДО | после | сдвиг | до | после | сдвиг | до | после | сдвиг |
-2 | ||||||||||||
-1 | -1 | |||||||||||
2 | ||||||||||||
-1 | -1 | |||||||||||
1 | 2 | 2 | ||||||||||
1 | 1 | 5 | ||||||||||
1 | 1 | |||||||||||
-1 | -2 | 2 | ||||||||||
1 | 1 | 1 | ||||||||||
2 | ||||||||||||
-1 | ||||||||||||
1 | ||||||||||||
-1 | ||||||||||||
-1 | 1 |
Вопросы:
1. Можно ли утверждать, что после просмотра видеозаписи о пользе телесных наказаний наблюдается достоверный сдвиг в сторону большего принятия их в экспериментальной группе?
2. Достоверны ли различия по выраженности положительного сдвига между экспериментальной и контрольной группами?
3. Является ли достоверным сдвиг оценок в контрольной группе?
Решение
Подсчитаем сначала количество положительных, отрицательных и нулевых сдвигов по каждой шкале в каждой из выборок. Это необходимо для выявления “типичных” знаков изменения оценок и значительно облегчит нам дальнейшие расчеты и рассуждения.
Таблица 3.4
Расчет количества положительных, отрицательных и нулевых сдвигов в двух группах суггерендов
Кол-во сдвигов | Шкалы | ||||
в группах | “Я сам” | “Бабушка” | “Воспитатель” | “Школа” | Суммы |
1. Экспериментальная группа | |||||
а) положительных б) отрицательных в) нулевых | |||||
Суммы | |||||
2. Контрольная группа | |||||
а) положительных 6) отрицательных в) нулевых | |||||
Суммы |
Из Табл. 3.4. мы видим, что наиболее типичными являются “нулевые” сдвиги, то есть отсутствие сдвига в оценках после предъявления видеозаписи или письменного текста. И все же, в экспериментальной группе по шкале “Я сам наказываю” и “Бабушка наказывает” положительные сдвиги наблюдаются примерно в половине случаев.
Нам необходимо учитывать только положительные и отрицательные сдвиги, а нулевые отбрасывать. Количество сопоставляемых пар значений при этом уменьшается на количество этих нулевых сдвигов. Теперь для шкалы “Я сам” n=8; для шкалы “Бабушка” n=9; шкалы “Воспитатель” n=5 и шкалы “Школа” n=4. Мы видим, что по отношению к последней шкале критерий знаков вообще неприменим, так как количество сопоставляемых пар значений меньше 5.
Мы можем сразу же проверить и гипотезу о преобладании положительного сдвига в ответах по сумме 4 шкал. Сумма положительных и отрицательных сдвигов по 4 шкалам составляет: n=8 9 5 4=26.
Сформулируем гипотезы.
Н0: Сдвиг в сторону более снисходительного отношения к телесным наказаниям после внушения является случайным.
H1: Сдвиг в сторону более снисходительного отношения к телесным наказаниям после внушения является неслучайным.
По Табл. V Приложения 1 определяем критические значения критерия знаков G. Это максимальные количества “нетипичных”, менее часто встречающихся, знаков, при которых сдвиг в “типичную” сторону еще можно считать существенным.
1) Шкала “Я сам наказываю”
n=8
Типичный сдвиг – положительный.
Отрицательных сдвигов нет.
Н0 отклоняется. Принимается H1 (p<0,01).
2) Шкала “Бабушка наказывает”
n=9
Типичный сдвиг – положительный.
Отрицательных сдвигов нет.
Н0 отклоняется. Принимается H1 (p<0,01).
3) Шкала “Воспитательница наказывает”
n=5
Типичный сдвиг – отрицательный.
Ответ: Сдвиг в сторону более снисходительного отношения к телесным наказаниям в экспериментальной группе после просмотра видеозаписи является неслучайным для шкал “Я сам наказываю”, “Бабушка наказывает” и по сумме четырех шкал (р<0,01 во всех случаях).
Сформулируем гипотезы для контрольной группы.
Н0: Сдвиг в сторону более снисходительного отношения к телесным наказаниям после прочтения текста является случайным.
H1: Сдвиг в сторону более снисходительного отношения к телесным наказаниям после прочтения текста не является случайным.
Далее действуем по тому же принципу: вначале определяем количество сдвигов в ту или иную сторону (n), выявляем типичный сдвиг и количество нетипичных сдвигов (Gэмп) сопоставляем с критическими значениям G, определяемыми по Табл. V Приложения 1.
1) Шкала “Я сам наказываю”
n=8
Положительных сдвигов – 4, отрицательных сдвигов – 4.
Типичный сдвиг установить невозможно, т.к. положительных и отрицательных сдвигов поровну.
Н0 принимается.
2) Шкала “Бабушка наказывает”
n=8
Положительных сдвигов – 4, отрицательных сдвигов – 4.
Н0 принимается по тем же основаниям, что и для предыдущей шкалы.
3) Шкала “Воспитательница наказывает”
n=6
Типичный сдвиг – положительный.
Отрицательных сдвигов – 2.
Gкp=0 (p≤0,05)
Gкр(p≤0,01) при данном п определить невозможно.
Gэмп=2
Gэмn>Gкp
Н0 принимается.
4) Шкала “Школа наказывает”
Поскольку n<5, критерий знаков неприменим.
5) Сумма по 4-м шкалам n=26
Типичный сдвиг – положительный. Количество отрицательных сдвигов – 10.
Ответ: Сдвиг в сторону более снисходительного отношения к телесным наказаниям в контрольной группе является случайным – и по каждой из шкал в отдельности, и по сумме шкал.
Мы можем определенно ответить на 1-ый вопрос задачи: да, можно утверждать, что после просмотра видеозаписи о пользе телесных наказаний наблюдается достоверный сдвиг в пользу большего принятия их в экспериментальной группе. Мы можем ответить и на 3-й вопрос задачи: нет, сдвиг оценок в контрольной группе недостоверен. Однако мы пока не ответили на 2-й вопрос – о том, достоверны ли различия по выраженности положительного сдвига между экспериментальной и контрольной группами?
Дело в том, что нами был избран вариант сопоставлений, предполагающий сравнение значений “после” и “до” экспериментального воздействия отдельно в экспериментальной и контрольной выборках. Для того, чтобы ответить на вопрос 2, необходимо выбрать второй вариант сопоставлений, предусматривающий сравнение сдвигов в двух группах с помощью критериев для сравнения независимых выборок -Q – критерия Розенбаума, U – критерия Манна-Уитни и критерия φ* Фишера (см. Табл. 3.1). Однако такого рода сопоставления, как правило, проводятся только в том случае, если и в экспериментальной, и в контрольной группах выявлен достоверный однонаправленный эффект, и нужно доказать, что в экспериментальной выборке он достоверно больше, выраженнее (см. Задачу 1). В данном же случае нами доказано, что в контрольной выборке не произошло сколько-нибудь значимых изменений, и мы можем этим удовлетвориться.
Казалось бы, мы доказали все, что необходимо: в экспериментальной группе испытуемые стали снисходительнее относиться к телесным наказаниям, а в контрольной группе достоверных сдвигов не обнаружено. Похоже, суггестор, отобранный по выявленным Г. А. Бадасо-вой качествам, действительно повлиял на изменение оценок, и притом именно он, что-то в его личности оказало это воздействие, потому что контрольной группе предъявлялся тот же по содержанию текст, но без суггестора. Однако, на самом деле мы установили лишь то, что в тех случаях, когда наблюдался какой-то сдвиг в оценках, он был скорее положительным, чем отрицательным в экспериментальной группе и скорее случайным в контрольной группе. Все нулевые сдвиги мы отбросили, а ведь они составляют от 43,8 до 50% по тем шкалам, где обнаружен положительный достоверный сдвиг в экспериментальной выборке. Похоже, что многие, очень многие испытуемые экспериментальной выборки просто проигнорировали выступление суггестора… Однако статистический критерий свидетельствует: положительный сдвиг в оценках достоверен, по крайней мере для первых двух шкал и для тех испытуемых, которые хоть как-то прореагировали на выступление суггестора.
АЛГОРИТМ 8
§
1. Минимальное количество испытуемых, прошедших измерения в двух условиях – 5 человек. Максимальное количество испытуемых – 50 человек, что диктуется верхней границей имеющихся таблиц. Крити-чесхие значения Т приведены в Табл. VI Приложения
2. Нулевые сдвиги из рассмотрения исключаются, и количество наблюдений п уменьшается на количество этих нулевых сдвигов (McCall R., 1970, р. 36). Можно обойти это ограничение, сформулировав гипотезы, включающие отсутствие изменений, например: “Сдвиг в сторону увеличения значений превышает сдвиг в сторону уменьшения значений и тенденцию сохранения их на прежнем уровне”.
Пример
В выборке курсантов военного училища (юноши в возрасте от 18 до 20 лет) измерялась способность к удержанию физического волевого усилия на динамометре. Сначала у испытуемых измерялась максимальная мышечная сила каждой из рук, а на следующий день им предлагалось выдерживать, на динамометре с подвижной стрелкой мышечное усилие, равное 1/2 максимальной мышечной силы данной руки. Почувствовав усталость, испытуемый должен был сообщить об этом экспериментатору, но не прекращать опыт, преодолевая усталость и неприятные ощущения – “бороться, пока воля не иссякнет”. Опыт проводился дважды; вначале с обычной инструкцией, а затем, после того, как испытуемый заполнял опросник самооценки волевых качеств по методике А.Ц. Пуни (Пуни А.Ц., 1977), ему предлагалось представить себе, что он уже добился идеала в развитии волевых качеств, и продемонстрировать соответствующее идеалу волевое усилие. Подтвердилась ли гипотеза экспериментатора о том, что обращение к идеалу способствует возрастанию волевого усилия? Данные представлены в Табл. 3.5.
Таблица 3.5
Расчет критерия Т при сопоставлении замеров физического волевого усилия
Код имени испытуемого | Длительность удержания усилия на динамометре (с) | Разность (fпосле– fдо) | Абсолютное значение разности | Ранговый номер разности | ||
До измерения волевых качеств и обращения к идеалу (fдо) | После измерения волевых качеств и обращения к идеалу (fпосле) | | ||||
9 10 11 | Г. Кос. Крив. Кур. Л. М. Р. С. Т. X. Ю. | 63 | – 39 – 27 3 – 19 – 38 – 8 4 – 4 – 38 25 – 18 | 9,5 2,5 | ||
Сумма | ||||||
Для подсчета этого критерия нет необходимости упорядочивать ряды значений по нарастанию признака. Мы можем использовать алфавитный список испытуемых, как в данном случае.
Первый шаг в подсчете критерия Т – вычитание каждого индивидуального значения “до” из значения “после”[10]. Мы видим из Табл. 3.5, что 8 полученных разностей – отрицательные и лишь 3 – положительные. Это означает, что у 8 испытуемых длительность удержания мышечного усилия во втором замере уменьшилась, а у 3 – увеличилась. Мы столкнулись с тем случаем, когда уже сейчас мы не можем сформулировать статистическую гипотезу, соответствующую первоначальному предположению исследователя. Предполагалось, что обращение к идеалу будет увеличивать длительность мышечного усилия, а экспериментальные данные свидетельствуют, что лишь в 3 случаях из 11 этот показатель действительно увеличился. Мы можем сформулировать лишь гипотезу, предполагающую несущественность сдвига этого показателя в сторону снижения.
Сформулируем гипотезы.
Н0: Интенсивность сдвигов в сторону уменьшения длительности мышечного усилия не превышает интенсивности сдвигов в сторону ее увеличения.
H1: Интенсивность сдвигов в сторону уменьшения длительности мышечного усилия превышает интенсивность сдвигов в сторону ее увеличения.
На следующем шаге все сдвиги, независимо от их знака, должны быть проранжированы по выраженности. В Табл. 3.5 в четвертом слева столбце приведены абсолютные величины сдвигов, а в последнем столбце (справа) – ранги этих абсолютных величин. Меньшему значению соответствует меньший ранг. При этом сумма рангов равна 66, что соответствует расчетной:
Теперь отметим те сдвиги, которые являются нетипичными, в данном случае – положительными. В Табл. 3.5 эти сдвиги и соответствующие им ранги выделены цветом. Сумма рангов этих “редких” сдвигов и составляет эмпирическое значение критерия Т:
где Rr– ранговые значения сдвигов с более редким знаком.
Итак, в данном случае,
Тэмn=1 2,5 7=10,5
По Таблице VI Приложения 1 определяем критические значения Т для n=11:
Зона значимости в данном случае простирается влево. Действительно, если бы “редких”, в данном случае положительных, сдвигов не было совсем, то и сумма их рангов равнялась бы нулю. В данном же случае эмпирическое значение Т попадает в зону неопределенности:
Тэмп<Ткр (0,05)
Ответ: Н0 отвергается. Интенсивность отрицательного сдвига показателя физического волевого усилия превышает интенсивность положительного сдвига (р<0,05).
Попытаемся графически отобразить интенсивность отрицательных и положительных сдвигов. На Рис. 3.4 слева сдвиги представлены в секундах, а справа – в своих ранговых значениях. Мы видим, что ранжирование несколько уменьшает площади сопоставляемых облаков, или “фронтов”.
Таким образом, исследователю придется признать, что продолжительность удержания мышечного волевого усилия во втором замере снижается, и этот сдвиг неслучаен. Инструкция, ориентирующая испытуемого на соответствие идеалу в развитии воли, оказалась гораздо менее мощным фактором, чем какая-то иная сила – возможно, мышечное утомление, может быть, разочарование в себе или в возможностях данного психологического эксперимента. А может быть, в момент второго замера просто перестает действовать какой-то мощный фактор, который был активен вначале? На все эти вопросы статистические методы не могут ответить, если в схему эксперимента не включена контрольная группа – в данном случае, выборка, уравновешенная с экспериментальной группой по всем значимым характеристикам (полу, возрасту, профессии, месту обучения), у которой просто измерили бы вторично волевое усилие через такой же промежуток времени, не призывая соответствовать идеалу в развитии воли.
Представим выполненные действия в виде алгоритма:
АЛГОРИТМ 9
§
Графически это будет выглядеть как “пучок” ломаных линий с изломами в одних и тех же местах. На Рис. 3.5 представлены графики изменения времени решения анаграмм’ в ходе эксперимента по исследованию интеллектуальной настойчивости. Мы видим, что “сырые” значения пяти испытуемых дают довольно-таки “рассыпающийся” пучок, хотя и с заметной тенденцией к излому в одной и той же точке – на анаграмме № 2. На Рис. 3.6 представлены графики, построенные по ранжированным данным того же исследования. Мы видим, что здесь “пучок” собран практически в одну жирную линию, с единственной выбивающейся из него кривой. В сущности, критерий χ2r позволяет нам оценить, достаточно ли согласованно изгибается пучок при переходе от условия к условию. χ2r тем больше, чем более выраженными являются различия.
Ограничения критерия
1. Нижний порог: не менее 2-х испытуемых (n≥2), каждый из которых прошел не менее 3-х замеров (с≥3).
2. При с=3, n≤9, уровень значимости полученного эмпирического значения χ2rопределяется по Таблице VII-A Приложения 1; при с=4, n≤4, уровень значимости полученного эмпирического значения χ2r определяется по Таблице VII-Б Приложения 1; при больших количествах испытуемых или условий полученные эмпирические значения χ2rсопоставляются с критическими значениями χ2r, определяемыми по Таблице IX Приложения 1. Это объясняется тем, что χ2rимеет распределение, сходное с распределением χ2r. Число степеней свободы v определяется по формуле:
v=c—1,
где с – количество условий измерения (замеров).
Пример
На Рис. 3.5. представлены графики изменения времени решения анаграмм в эксперименте по исследованию интеллектуальной настойчивости (Сидоренко Е. В., 1984). Анаграммы нужно было подобрать таким образом, чтобы постепенно подготовить испытуемого к самой трудной – а фактически неразрешимой – задаче. Иными словами, испытуемый должен был постепенно привыкнуть к тому, что задачи становятся все более и более трудными, и что над каждой последующей анаграммой ему приходится проводить больше времени. Достоверны ли различия во времени решения испытуемыми анаграмм?
Таблица 3.5
Показатели времени решения анаграмм (сек.)
Код имени испытуемого | Анаграмма 1: КРУА (РУКА) | Анаграмма 2: АЛСТЬ (СТАЛЬ) | Анаграмма 3: ИНААМШ (МАШИНА) |
1. Л-в 2. П-о 3. К-в 4. Ю-ч 5. Р-о | 235*[11] | ||
Суммы | |||
| Средние | 10,2 | 248,8 | 9,4 |
Проранжируем значения, полученные по трем анаграммам каждым испытуемым. Например, испытуемый К-в меньше всего времени провел над анаграммой 1 – следовательно, она получает ранг 1. На втором месте у него стоит анаграмма 3 – она получает ранг 2. Наконец, анаграмма 2 получает ранг 3, потому что она решалась им дольше двух других.
Сумма рангов по каждому испытуемому должна составлять 6.
Расчетная общая сумма рангов в критерии определяется по формуле:
где n – количество испытуемых
с – количество условий измерения (замеров).
В данном случае,
Таблица 3.6
Показатели времени решения анаграмм 1, 2, 3 и их ранги (n=5)
Код имени испытуемого | Анаграмма 1 | Анаграмма 2 | Анаграмма 3 | |||
| Время (сек) | Ранг | Время (сек) | Ранг | Время (сек) | Ранг |
1. Л-в | ||||||
2. П-о | ||||||
3. К-в | ||||||
4. Ю-ч | ||||||
5. Р-о | ||||||
Суммы |
Общая сумма рангов составляет: 6 15 9—30, что совпадает с расчетной величиной.
Мы помним, что испытуемый Л-в провел 3 минуты и 55 сек над решением второй анаграммы, но так и не решил ее. Поскольку он решал ее дольше остальных двух анаграмм, мы имеем право присвоить ей ранг 3. Ведь назначение трех первых анаграмм – подготовить испытуемого к тому, что над следующей анаграммой ему, возможно, придется думать еще дольше, в то время как сам факт нахождения правильного ответа не так существен.
Сформулируем гипотезы.
Н0: Различия во времени, которое испытуемые проводят над решением трех различных анаграмм, являются случайными.
H1: Различия во времени, которое испытуемые проводят над решением трех различных анаграмм, не являются случайными.
Теперь нам нужно определить эмпирическое значение χ2rпо формуле:
где с – количество условии;
п – количество испытуемых;
Тi – суммы рангов по каждому из условий.
Определим χ2rдля данного случая:
Поскольку в данном примере рассматриваются три задачи, то есть 3 условия, с=3. Количество испытуемых n=5. Это позволяет нам воспользоваться специальной таблицей χ2r, а именно Табл. VII-A Приложения 1. Эмпирическое значение χ2r=8,4 при с=3, n=5 точно соответствует уровню значимости р=0,0085.
Ответ: Но отклоняется. Принимается H1. Различия во времени, которое испытуемые проводят над решением трех различных анаграмм, неслучайны (р=0,0085).
Теперь мы можем сформулировать общий алгоритм действий по применению критерия χ2r.
АЛГОРИТМ 10
Подсчет критерия χ2rФридмана
1.Проранжировать индивидуальные значения первого испытуемого, полученные им в 1-м, 2-м, 3-м и т. д. замерах.
2.Проделать то же самое по отношению ко всем другим испытуемым.
3.Просуммировать ранги по условиям, в которых осуществлялись замеры. Проверить совпадение общей суммы рангов с расчетной суммой.
4.Определить эмпирическое значение χ2rпо формуле:
где с – количество условии;
п – количество испытуемых;
Ti – суммы рангов по каждому из условий.
5.Определить уровни статистической значимости для χ2r
а)при с=3, n<9 – по Табл. VII-A Приложения 1;
б)при с=4, n<4 – по Табл. VII-Б Приложения 1.
6.При большем количестве условий и/или испытуемых – определить количество степеней свободы v по формуле:
v=c-1,
где с – количество условий (замеров).
По Табл. IX Приложения 1 определить критические значения критерия χ2 при данном числе степеней свободы V.
Если χ2rэмп равен критическому значению χ2или превышает его, различия достоверны.
§
Используем для иллюстрации пример с предъявлением анаграмм предположительно возрастающей сложности. Замысел экспериментатора состоял в том, чтобы каждая последующая задача требовала от испытуемых все более длительных раздумий.
Судя по графику на Рис. 3.6, у большинства испытуемых анаграмма 1 стоит на первом ранговом месте, то есть решается быстрее двух других, анаграмма 3 на 2-м ранговом месте, а анаграмма 2 – на 3-м. По-видимому, их следовало бы предъявлять в иной последовательности: 1, 3, 2. График, отражающий такую гипотетическую последовательность задач, представлен на Рис. 3.7.
Символом достоверной, отчетливой тенденции в изменении показателей при переходе от условия к условию будет достаточно “собранная” ломаная кривая, устремленная кверху или, наоборот, книзу. Если на Рис. 3.6 характерной чертой всех индивидуальных кривых был крутой излом в одной и той же точке графика, то в данном случае на некоторых отрезках повышение кривой характеризуется большей крутизной, а на других – меньшей крутизной. Очевидно, достоверность тенденций будет обеспечиваться именно отрезками более крутого восхождения, но тест тенденций снисходительно распространит этот эффект и на более пологие отрезки.
На Рис. 3.8 графики представлены уже для ранжированных показателей. Здесь уже все различия в крутизне сглажены. L-тест построен на сопоставлении сумм рангов, а ранжирование неизбежно несколько огрубляет полученные показатели. Опыт показывает, однако, что L-тест является достаточно мощным критерием, хотя и ограниченным по сфере применения из-за отсутствия таблиц критических значений для больших n.
Ограничения критерия Пейджа
1. Нижний порог – 2 испытуемых, каждый из которых прошел не менее 3-х замеров в разных условиях. Верхний порог – 12 испытуемых и 6 условий (n≤12, c≤6). Критические значения критерия L даны по руководству J.Greene, M. D’Olivera (1989). Они предусматривают три уровня статистической значимости: р≤0,05; р≤0,01; р≤0,001.
2. Необходимым условием применения теста является упорядоченность столбцов данных: слева должен располагаться столбец с наименьшей ранговой суммой показателей, справа – с наибольшей. Можно просто пронумеровать заново все столбцы, а потом вести расчеты не слева направо, а по номерам, но так легче запутаться.
Пример
Продолжим рассмотрение примера с анаграммами. В Табл. 3.7 показатели времени решения анаграмм и их ранги представлены уже в упорядоченной последовательности: анаграмма 1, анаграмма 3, анаграмма 2. Действительно ли время решения увеличивается при такой последовательности предъявления анаграмм?
Таблица 3.7
Показатели времени решения анаграмм 1, 3, 2 и их ранги (n=5)
Код имени испытуемого | Условие 1: Анаграмма 1 | Условие 2: Анаграмма 3 | Условие 3: Анаграмма 2 | ||||
Время (сек) | Ранг | Время (сек) | Ранг | Время (сек) | Ранг | ||
Л-в | |||||||
П-о | |||||||
К-в | |||||||
Ю-ч | |||||||
Р-о | |||||||
Суммы | |||||||
Средние | 10,2 | 9,4 |
Сумма рангов составляет: 6 9 5=30. Расчетная сумма:
Реально полученная и расчетная суммы совпадают, мы можем двигаться дальше.
Как видно из Табл. 3.7, среднее время решения анаграммы 3 даже меньше, чем анаграммы 1. Однако мы исследуем не среднегруп-повые тенденции, а степень совпадения индивидуальных тенденций. Нам важен именно порядок, а не абсолютные показатели времени. Поэтому и формулируемые нами гипотезы – это гипотезы о тенденциях изменения индивидуальных показателей.
Сформулируем гипотезы.
Н0: Тенденция увеличения индивидуальных показателей от первого условия к третьему является случайной.
H1: Тенденция увеличения индивидуальных показателей от первого условия к третьему не является случайной. Эмпирическое значение L определяется по формуле:
где Ti– сумма рангов по каждому условию;
j – порядковый номер, приписанный каждому условию в новой последовательности .
По Табл. VIII Приложения 1 определяем критические значения L для данного количества испытуемых: n=5, и данного количества условий: с=3.
Построим “ось значимости”
Ответ: Н0 отклоняется. Принимается H1. Тенденция увеличения индивидуальных показателей от первого условия к третьему не является случайной (р<0,01). Последовательность анаграмм: 1(КРУА), З(ИНААМШ), 2(АЛСТЬ), – будет в большей степени отвечать замыслу экспериментатора о постепенном возрастании сложности задач, чем первоначально применявшаяся последовательность.
АЛГОРИТМ 11
§
1.Проранжировать индивидуальные значения первого испытуемого, полученные им в 1-м, 2-м, 3-ми т. д. замерах.
При этом первым может быть любой испытуемый, например первый по алфавиту имен.
2.Проделать то же самое по отношению ко всем другим испытуемым.
3.Просуммировать ранги по условиям, в которых осуществлялись замеры. Проверить совпадение общей суммы рангов с расчетной суммой.
4.Расположить все условия в порядке возрастания их ранговых сумм в таблице.
5.Определить эмпирическое значение L по формуле:
где Ti – сумма рангов по данному условию;
j – порядковый номер, приписанный данному условию в упорядоченной последовательности условий.
6. По Ta6A.VIII Приложения 1 определить критические значения L для данного количества испытуемых п и данного количества условий с. Если Lэмп равен критическому значению или превышает его, тенденция достоверна.
Задачи для самостоятельной работы
ВНИМАНИЕ!
При выборе способа решения задачи рекомендуется пользоваться
АЛГОРИТМОМ 12
Задача 4
В исследовании Г. А. Бадасовой, которое уже рассматривалось как пример к параграфу 3.2, было установлено, что испытуемые по-разному относятся к наказаниям, которые совершают по отношению к их детям разные люди. Например, наказание со стороны самого родителя считается более приемлемым, чем наказание со стороны бабушки, и тем более воспитательницы или учительницы (см. Табл. 3.8).
Таблица 3.8
Оценки степени согласия с утверждениями о допустимости телесных наказаний до предъявления видеозаписи в экспериментальной группе (n=16)
Испытуемые | Условие 1: “Я сам наказываю” | Условие 2: “Бабушка наказывает” | Условие 3: “Учительница наказывает” |
И | |||
Суммы |
Можно ли говорить о достоверной тенденции в оценках?
Задача 5.
12 участников комплексной программы тренинга партнерского общения, продолжавшегося 7 дней, дважды оценивали у себя уровень владения тремя важнейшими коммуникативными навыками. Первое измерение производилось в первый день тренинга, второе – в последний. Участники должны были также наметить для себя реально достижимый, с их точки зрения, индивидуальный идеал в развитии каждого из навыков. Все измерения производились по 10-балльной шкале. Данные представлены в Табл. 3.9.
Таблица 3.9
Оценки реального и идеального уровней развития коммуникативных навыков (n=12)
1 измерение | 2 измерение | ||||||||||||
Код имени участника | Активное слушание | Снижение эмоционально- го напряжения | Аргументация | Активное слушание | Снижение эмоционально- | Аргументация | |||||||
Реал. | Идеал. | Реал. | Идеал. | Реал. | Идеал. | Реал. | Идеал. | Реал. | Идеал. | Реал. | Идеал. | ||
И. Я. Ин. Р. К. Н. Е. Ле. Ли. Т. Ет. Б. | |||||||||||||
Вопросы:
1. Ощущаются ли участниками достоверные сдвиги в уровне владения каждым из трех навыков после тренинга?
2. Произошли ли по трем группам навыков разные сдвиги, или эти сдвиги для разных навыков примерно одинаковы?
3. Уменьшается ли расхождение между “идеальным” и реальным уровнями владения навыками после тренинга?
Алгоритм принятия решения о выборе критерия оценки изменений
ГЛАВА 4
ВЫЯВЛЕНИЕ РАЗЛИЧИЙ В РАСПРЕДЕЛЕНИИ ПРИЗНАКА
§
Распределения могут различаться по средним, дисперсиям, асимметрии, эксцессу и по сочетаниям этих параметров. Рассмотрим несколько примеров.
На Рис. 4.1 представлены два распределения признака. Распределение 1 характеризуется меньшим диапазоном вариативности и меньшей дисперсией, чем распределение 2. В распределении 1 чаще встречаются значения признака, близкие к средней, а в распределении 2 чаще встречаются более высокие и более низкие, чем средняя, значения признака.
Рис. 4.1. Кривые распределения признака с меньшим диапазоном вариативности признака (1) и большим диапазоном распределения признака (2); х – значения признака;
f – относительная частота их встречаемости
Именно такое соотношение может наблюдаться в распределении фенотипических признаков у мужчин (кривая 2) и женщин (кривая 1). Фенотипическая дисперсия мужского пола должна быть больше, чем женского (Геодакян В.А., 1974; 1993). Мужчины – это авангардная часть популяции, ответственная за поиск новых форм приспособления, поэтому у них чаще встречаются редкие крайние значения различных фенотипических признаков. Эти отклонения, по мнению В.А. Геодакяна, носят “футуристический” характер, это “пробы”, включающие как будущие возможные пути эволюции, так и ошибки (Геодакян В.А., 1974, с. 381). В то же время женская часть популяции ответственна за сохранение уже накопленных изменений, поэтому у них чаще встречаются средние значения фенотипических признаков.
Анализ реально получаемых в исследованиях распределений может позволить нам подтвердить или опровергнуть данные теоретические предположения.
На Рис. 4.2 представлены два распределения, различающиеся по знаку асимметрии: распределение 1 характеризуется положительной асимметрией (левосторонней), а распределение 2 — отрицательной (правосторонней).
Рис. 4.2. Кривые распределения признака с положительной (левосторонней) асимметрией (1) и отрицательной (правосторонней) асимметрией (2); х – значения признака; ( -относительная частота их встречаемости
Данные кривые могут отражать распределение времени решения простой задачи (кривая 1) и трудной задачи (кривая 2). Простую задачу большинство испытуемых решают быстро, поэтому большая часть значений группируется слева. В то же время сама простота задачи может привести к тому, что некоторые испытуемые будут думать над нею очень, очень долго, дольше даже, чем над сложной. Трудную задачу большинство испытуемых решают в тенденции дольше, чем простую, но в то же время почти всегда находятся люди, которые решают ее мгновенно.
Если мы докажем, что распределения статистически достоверно различаются, это может стать основой для построения классификаций задач и типологий испытуемых. Например, мы можем выявлять испытуемых со стандартным соотношением признаков: простую задачу они решают быстро, а трудную – медленно, — и испытуемых с нестандартным соотношением: простую задачу решают медленно, а трудную – быстро и т.п. Далее мы можем сравнить выявленные группы испытуемых по показателям мотивации достижения, так как известно, что лица с преобладанием стремления к успеху предпочитают задачи средней трудности, где вероятность успеха примерно 0.5, а лица с преобладанием стремления избегать неудачи предпочитают либо очень легкие, либо, наоборот, очень трудные задачи (МсСlelland D.С, Winter D.G., 1969). Таким образом, и здесь сопоставление форм распределения может дать начало научному поиску.
Часто нам бывает полезно также сопоставить полученное эмпирическое распределение с теоретическим распределением. Например, для того, чтобы доказать, что оно подчиняется или, наоборот, не подчиняется нормальному закону распределения. Это лучше делать с помощью машинных программ обработки данных, особенно при больших объемах выборок. Подробные программы машинной обработки можно найти, например, в руководстве Э.В. Ивантер и А.В. Коросова (1992).
В практических целях эмпирические распределения должны проверяться на “нормальность” в тех случаях, когда мы намерены использовать параметрические методы и критерии. В данном руководстве это относится лишь к методам дисперсионного анализа, поэтому способы проверки совпадения эмпирического распределения с нормальным описаны в Главе 7, посвященной однофакторному дисперсионному анализу.
Традиционные для отечественной математической статистики критерии определения расхождения или согласия распределений – это метод χ2К. Пирсона и критерий X Колмогорова-Смирнова.
Оба эти метода требуют тщательной группировки данных и довольно сложных вычислений. Кроме того, возможности этих критериев в полной мере проявляются на больших выборках (n>30). Тем не менее они могут оказаться столь незаменимыми, что исследователю придется пренебречь экономией времени и усилий. Например, они незаменимы в следующих двух случаях:
в задачах, требующих доказательства неслучайности предпочтений в выборе из нескольких альтернатив;
в задачах, требующих обнаружения точки максимального расхождения между двумя распределениями, которая затем используется для перегруппировки данных с целью применения критерия φ* (углового преобразования Фишера).
Рассмотрим вначале традиционные методы определения расхождения распределений, а затем возможности использования критерия φ* Фишера.
4,2. χ2 критерий Пирсона
Назначения критерия
Критерий χ2 применяется в двух целях;
1) для сопоставления эмпирического распределения признака с теоретическим – равномерным, нормальным или каким-то иным;
2) для сопоставления двух, трех или более эмпирических распределений одного и того же признака[12].
Описание критерия
Критерий χ2отвечает на вопрос о том, с одинаковой ли частотой встречаются разные значения признака в эмпирическом и теоретическом распределениях или в двух и более эмпирических распределениях.
Преимущество метода состоит в том, что он позволяет сопоставлять распределения признаков, представленных в любой шкале, начиная от шкалы наименований (см. п. 1.2). В самом простом случае альтернативного распределения “да – нет”, “допустил брак – не допустил брака”, “решил задачу – не решил задачу” и т. п. мы уже можем применить критерий χ2.
Допустим, некий наблюдатель фиксирует количество пешеходов, выбравших правую или левую из двух симметричных дорожек на пути из точки А в точку Б (см. Рис. 4.3).
Допустим, в результате 70 наблюдений установлено, что Э человек выбрали правую дорожку, и лишь 19 – левую. С помощью критерия χ2мы можем определить, отличается ли данное распределение выборов от равномерного распределения, при котором обе дорожки выбирались бы с одинаковой частотой. Это вариант сопоставления полученного эмпирического распределения с теоретическим. Такая задача может стоять, например, в прикладных психологических исследованиях, связанных с проектированием в архитектуре, системах сообщения и др.
Но представим себе, что наблюдатель решает совершенно другую задачу: он занят проблемами билатерального регулирования. Совпадение полученного распределения с равномерным его интересует гораздо в меньшей степени, чем совпадение или несовпадение его данных с данными других исследователей. Ему известно, что люди с преобладанием правой ноги склонны делать круг против часовой стрелки, а люди с преобладанием левой ноги – круг по ходу часовой стрелки, и что в исследовании коллег[13] преобладание левой ноги было обнаружено у 26 человек из 100 обследованных.
С помощью метода χ2 он может сопоставить два эмпирических распределения: соотношение 51:19 в собственной выборке и соотношение 74:26 в выборке других исследователей.
Это вариант сопоставления двух эмпирических распределений по простейшему альтернативному признаку (конечно, простейшему с математической точки зрения, а отнюдь не психологической).
Аналогичным образом мы можем сопоставлять распределения выборов из трех и более альтернатив. Например, если в выборке из 50 человек 30 выбрали ответ (а), 15 человек – ответ (б) и 5 человек -ответ (в), то мы можем с помощью метода χ2 проверить, отличается ли это распределение от равномерного распределения или от распределения ответов в другой выборке, где ответ (а) выбрали 10 человек, ответ (б) -25 человек, ответ (в) – 15 человек.
В тех случаях, если признак измеряется количественно, скажем, вбаллах, секундах или миллиметрах, нам, быть может, придется объединить все обилие значений признака в несколько разрядов. Например, если время решения задачи варьирует от 10 до 300 секунд, то мы можем ввести 10 или 5 разрядов, в зависимости от объема выборки. Например, это будут разряды: 0-50 секунд; 51-100 секунд; 101-150 секунд, и т. д. Затем мы с помощью метода χ2будет сопоставлять частоты встречаемости разных разрядов признака, но в остальном принципиальная схема не меняется.
При сопоставлении эмпирического распределения с теоретическим мы определяем степень расхождения между эмпирическими и теоретическими частотами.
При сопоставлении двух эмпирических распределений мы определяем степень расхождения между эмпирическими частотами и теоретическими частотами, которые наблюдались бы в случае совпадения двух этих эмпирических распределений. Формулы расчета теоретических частот будут специально даны для каждого варианта сопоставлений.
Чем больше расхождение между двумя сопоставляемыми распределениями, тем больше эмпирическое значение у}.
Гипотезы
Возможны несколько вариантов гипотез, в зависимости от задач,
которые мы перед собой ставим.
Первый вариант:
Н0: Полученное эмпирическое распределение признака не отличается от теоретического (например, равномерного) распределения.
Н1: Полученное эмпирическое распределение признака отличается от теоретического распределения.
Второй вариант:
Н0: Эмпирическое распределение 1 не отличается от эмпирического распределения 2.
Н1: Эмпирическое распределение 1 отличается от эмпирического распределения 2.
Третий вариант:
Н0: Эмпирические распределения 1, 2, 3, … не различаются между собой.
Н1: Эмпирические распределения 1, 2, 3, … различаются между собой.
Критерий χ2 позволяет проверить все три варианта гипотез.
§
Проиллюстрируем пример с выбором правой или левой дорожек на пути из точки А в точку Б. На Рис. 4.4 частота выбора левой дорожки представлена левым столбиком, а частота выбора правой дорожки – правым столбиком гистограммы[14]. На оси ординат отмеряются относительные частоты выбора, то есть частоты выбора той или иной дорожки, отнесенные к общему количеству наблюдений. Для левой дорожки относительная частота, которая называется также частостью, составляет 19/70, то есть 0,27, а для правой дорожки 51/70, то есть 0,73.
Если бы обе дорожки выбирались равновероятно, то половина испытуемых выбрала бы правую дорожку, а половина – левую. Вероятность выбора каждой из дорожек составляла бы 0,50.
Мы видим, что отклонения эмпирических частот от этой величины довольно значительны. Возможно, различия между эмпирическим и теоретическим распределением окажутся достоверными.
На Рис. 4.5 фактически представлены две гистограммы, но столбики сгруппированы так, что слева сопоставляются частоты предпочтения левой дорожки в выборе нашего наблюдателя (1) и в выборке Т.А. Доброхотовой и Н.Н. Брагиной (2), а справа – частоты предпочтения правой дорожки в этих же двух выборках.
Мы видим, что расхождения между выборками очень незначительны. Критерий χ2,скорей всего, подтвердит совпадение двух распределений.
Ограничения критерия
1.Объем выборки должен быть достаточно большим: п≥30. При п<30 критерий χ2 дает весьма приближенные значения. Точность критерия повышается при больших п.
2. Теоретическая частота для каждой ячейки таблицы не должна быть меньше 5: f>5. Это означает, что если число разрядов задано заранее и не может быть изменено, то мы не можем применять метод χ2, не накопив определенного минимального числа наблюдений. Если, например, мы хотим проверить наши предположения о том, что частота обращений в телефонную службу Доверия неравномерно распределяются по 7 дням недели, то нам потребуется 5*7=35 обращений. Таким образом, если количество разрядов (k) задано заранее, как в данном случае, минимальное число наблюдений (nmin) определяется по формуле: nmin=k*5.
3. Выбранные разряды должны “вычерпывать” все распределение, то есть охватывать весь диапазон вариативности признаков. При этом группировка на разряды должна быть одинаковой во всех сопоставляемых распределениях.
4. Необходимо вносить “поправку на непрерывность” при сопоставлении распределений признаков, которые принимают всего 2 значения. При внесении поправки значение χ2 уменьшается (см. Пример с по правкой на непрерывность).
5. Разряды должны быть неперекрещивающимися: если наблюдение отнесено к одному разряду, то оно уже не может быть отнесено ни к какому другому разряду.
Сумма наблюдений по разрядам всегда должна быть равна общему количеству наблюдений.
Правомерен вопрос о том, что считать числом наблюдений – количество выборов, реакций, действий или количество испытуемых, которые совершают выбор, проявляют реакции или производят действия. Если испытуемый проявляет несколько реакций, и все они регистрируются, то количество испытуемых не будет совпадать с количеством реакций. Мы можем просуммировать реакции каждого испытуемого, как, например, это делается в методике Хекхаузена для исследования мотивации достижения или в Тесте фрустрационной толерантности С. Розенцвейга, и сравнивать распределения индивидуальных сумм реакций в нескольких выборках.
В этом случае числом наблюдений будет количество испытуемых. Если же мы подсчитываем частоту реакций определенного типа в целом по выборке, то получаем распределение реакций разного типа, и в этом случае количеством наблюдений будет общее количество зарегистрированных реакций, а не количество испытуемых.
С математической точки зрения правило независимости разрядов соблюдается в обоих случаях: одно наблюдение относится к одному и только одному разряду распределения.
– Можно представить себе и такой вариант исследования, где мы изучаем распределение выборов одного испытуемого. В когнитивно-бихевиоральной терапии, например, клиенту предлагается всякий раз фиксировать точной время появления нежелательной реакции, например, приступов страха, депрессии, вспышек гнева, самоуничижающих мыслей и т. п. В дальнейшем психотерапевт анализирует полученные данные, выявляя часы, в которые неблагоприятные симптомы проявляются чаще, и помогает клиенту строить индивидуальную программу предупреждения неблагоприятных реакций.
Можно ли с помощью критерия χ2доказать, что некоторые часы являются в этом индивидуальном распределении более часто встречающимися, а другие – менее часто встречающимися? Все наблюдения – зависимы, так как они относятся к одному и тому же испытуемому; в то же время все разряды – неперекрещивающиеся, так как один и тот же приступ относится к одному и только одному разряду (в данном случае – часу дня). По-видимому, применение метода χ2 будет в данном случае некоторым упрощением. Приступы страха, гнева или депрессии могут наступать неоднократно в течение дня, и может оказаться так, что, скажем, ранний утренний, 6-часовой, и поздний вечерний, 12-часовой, приступы обычно появляются вместе, в один и тот же день: в то же время дневной 3-часовой приступ появляется не ранее как через сутки после предыдущего приступа и не менее чем за двое суток до следующего и т. п. По-видимому, речь здесь может идти о сложной математической модели или вообще о чем-то таком, чего нельзя “поверить алгеброй”. И тем не менее в практических целях может оказаться полезным использовать критерий для того, чтобы выявить систематическую неравномерность наступления каких-либо значимых событий, выбора, предпочтений и т. п. у одного и того же человека.
Итак, одно и то же наблюдение должно относиться только к одному разряду. Но считать ли наблюдением каждого испытуемого или каждую исследуемую реакцию испытуемого – вопрос, решение которого зависит от целей исследования (см.. напр., Ганзен В.А., Балин В.Д., 1991, с.10).
Главное же “ограничение” критерия χ2– то, что он кажется большинству исследователей пугающе сложным.
Попытаемся преодолеть миф о непостижимой трудности критерия χ2. Чтобы оживить изложение, рассмотрим шутливый литературный пример.
Шутливый пример
В гениальной комедии Н. В. Гоголя “Женитьба” у купеческой дочери Агафьи Тихоновны было пятеро женихов. Одного она сразу исключила из рассмотрения, потому что он был купеческого звания, как и она сама. А из остальных она не знала, кого выбрать: “Уж как трудно решиться, так просто рассказать нельзя, как трудно. Если бы губы Никанора Ивановича да приставить к носу Ивана Кузьмича, да взять сколько-нибудь развязности, какая у Балтазара Балтазарыча, да, пожалуй, прибавить к этому еще дородности Ивана Павловича, я бы тогда тотчас решилась. А теперь поди подумай! просто голова даже стала болеть. Я думаю, лучше всего кинуть жребий” (Гоголь Н.В., 1959, с. 487). И вот Агафья Тихоновна положила бумажки с четырьмя именами в ридикюль, пошарила рукою в ридикюле и вынула вместо одного — всех!
Ей хотелось, чтобы жених совмещал в себе достоинства всех четверых, и, вынимая все бумажки вместо одной, она бессознательно совершала процедуру выведения средней величины. Но вывести среднюю величину из четверых людей невозможно, и Агафья Тихоновна в смятении. Она влюблена, но не знает, в кого. “Такое несчастное положение девицы, особливо еще влюбленной” (там же, с. 487).
Вся беда в том, что ни Агафья Тихоновна, ни ее тетушка, ни сваха Фекла Ивановна не были знакомы с критерием χ2! Именно он мог бы им помочь в решении их проблемы. С его помощью можно было бы попробовать установить, в кого больше влюблена Агафья Тихоновна. Но для этого нам не нужно измерять губы Никанора Ивановича или нос Ивана Кузьмича, или объем талии дородного экзекутора Ивана Павловича; не нужно нам и пускаться на какие-нибудь опасные эксперименты, чтобы определить, насколько далеко простирается развязность Балтазара Балтазарыча. Мы эти их достоинства принимаем как данность потому лишь, что они нравятся Агафье Тихоновне. Мы принимаем их за разряды одного и того же признака, например, направленности взгляда Агафьи Тихоновны: сколько раз она взглянула на губы Никанора Ивановича? На нос Ивана Кузьмича? Благосклонно взирала на дородного Ивана Павловича или развязного Балтазара Бал-тазаровича? Внимательная сваха или тетушка вполне могла бы этот признак наблюдать. Допустим, за полчаса смотрин ею зафиксированы следующие наблюдения.
Агафья Тихоновна:
сидела с опущенными глазами 25 минут;
благосклонно смотрела на Никанора Ивановича 14 раз;
благосклонно смотрела на Ивана Кузьмича 5 раз;
благосклонно смотрела на Ивана Павловича 8 раз;
благосклонно смотрела на Балтазара Балтазарыча 5 раз.[15]
Представим это в виде таблицы.
Таблица 4.1
Распределение взгляда Агафьи Тихоновны между 4 женихами
женихи | Никанор Иванович | Иван Кузьмич | Иван Павлович | Балтазар Балтазарыч | Всего взглядов |
Количество взглядов |
Теперь нам нужно сопоставить полученные эмпирические частоты с теоретическими. Если Агафья Тихоновна никому не отдает предпочтения, то данное распределение показателя направленности ее взгляда не будет отличаться от равномерного распределения: она на всех смотрит примерно с одинаковой частотой. Но если достоинства одного из женихов чаще притягивают ее взор, то это может быть основанием для матримониального решения.
Гипотезы
Н0: Распределение взглядов Агафьи Тихоновны между женихами не отличается от равномерного распределения.
Н1: Распределение взглядов Агафьи Тихоновны между женихами отличается от равномерного распределения.
Теперь нам нужно определить теоретическую частоту взгляда при равномерном распределении. Если бы все взгляды невесты распределялась равномерно между 4-мя женихами, то, по-видимому, каждый из них получил бы по 1/4 всех ее взглядов.
Переведем эти рассуждения на более формализованный язык. Теоретическая частота при сопоставлении эмпирического распределения с равномерным определяется по формуле:
где п – количество наблюдений;
к – количество разрядов признака.
В нашем случае признак – взгляд невесты, направленный на кого-либо из женихов; количество разрядов признака – 4 направления взгляда, по количеству женихов; количество наблюдений – 32.
Итак, в нашем случае:
Теперь мы будем сравнивать с этой теоретической частотой всеэмпирические частоты.
На Рис. 4.6 сопоставления эмпирических частот с теоретической представлены графически. Похоже, что области расхождений достаточно значительны, и Никанор Иванович явно опережает других женихов. Иван Павлович еще может на что-то надеяться, но для Ивана Кузьмича и Балтазара Балтазарыча отставка, по-видимому, неизбежна.
Однако для того, чтобы доказать неравномерность полученного эмпирического распределения, нам необходимо произвести точные расчеты. В методе χ2они производятся с точностью до сотых, а иногда и до тысячных долей единицы.
Расчеты будем производить в таблице по алгоритму.
АЛГОРИТМ 13
Расчет критерия χ2
Занести в таблицу наименования разрядов и соответствующие им эмпирические частоты (первый столбец).
Рядом с каждой эмпирической частотой записать теоретическую частоту (второй столбец).
Подсчитать разности между эмпирической и теоретической частотой по каждому разряду (строке) и записать их в третий столбец.
4. Определить число степеней свободы по формуле:
ν=κ-1
где κ – количество разрядов признака.
Если ν=1, внести поправку на “непрерывность”.
5. Возвести в квадрат полученные разности и занести их в четвертый столбец.
6. Разделить полученные квадраты разностей на теоретическую частоту и записать результаты в пятый столбец.
7. Просуммировать значения пятого столбца. Полученную сумму обозначить как χ2ЭМП.
8. Определить по Табл. IX Приложения 1 критические значения для данного числа степеней свободы V.
Если χ2эмп меньше критического значения, расхождения между распределениями статистически недостоверны.
Если χ2эмп равно критическому значению или превышает его, расхождения между распределениями статистически достоверны.
Все вычисления для данного случая отражены в Табл. 4.2.
Таблица 4.2
Расчет критерия χ2 при сопоставлении эмпирического распределения взгляда Агафьи Тихоновны между женихами с равномерным распределением
Разряды – женихи | Эмпирическая частота взгляда (fэj) | Теоретическая частота (fт) | (fэj-fт) | (fэj-fт)2 | (fэj-fт)2/ fт | |
| Никанор Иванович Иван Кузьмич Иван Павлович Балтазар Балтазарыч |
|
| 6 -3 |
| 4.500 1.125 |
Суммы | 6.750 | |||||
Может показаться, что удобнее суммировать все возведенные в квадрат разности между эмпирическими и теоретическими частотами, а затем уже эту сумму разделить на fт. В данном случае это возможно, так как fт для всех разрядов одинакова. Однако позже мы увидим, что так бывает далеко не всегда. Нужно быть внимательными или, экономя свое внимание, просто взять за правило всякий раз вычислять (fэi—fт)2/fт до суммирования.
Необходимо также всякий раз убеждаться в том, что сумма разностей между эмпирическими и теоретической частотами (сумма по третьему столбцу) равна 0. Если это равенство не соблюдается, это означает, что в подсчете частот или разностей допущена ошибка. Необходимо найти и устранить ее прежде чем переходить к дальнейшим расчетам.
Алгоритм вычислений, таким образом, выражается формулой:
где fэj– эмпирическая частота по j-тому разряду признака; fт – теоретическая частота; j – порядковый номер разряда; k – количество разрядов признака. В данном случае:
Для того, чтобы установить критические значения % , нам нужно определить число степеней свободы V по формуле: ν=k-l
где k – количество разрядов. В нашем случае ν=4—1=3. По Табл. IX Приложения 1 определяем:
Построим “ось значимости”. Ясно, что чем больше отклонения эмпирических частот от теоретической, тем больше будет величина χ2 . Поэтому зона значимости располагается справа, а зона незначимости -слева.
К сожалению, на основании этих данных тетушка не сможет дать Агафье Тихоновне обоснованного ответа:
χ2эмп<χ2кр.
Ответ: Н0 принимается. Распределение взгляда Агафьи Тихоновны между женихами не отличается от равномерного распределения.
Но, допустим, тетушка на этом не успокоилась. Она стала внимательно следить за тем, сколько раз племянница упомянет в разговоре каждого из женихов. Допустим, ею получено следующее распределение упоминаний Агафьей Тихоновной женихов и их достоинств:
Никанор Иванович – 15 раз,
Иван Кузьмич – 6 раз,
Иван Павлович – 9 раз,
Балтазар Балтазарыч – 6 раз.
Тетушка уже видит, что похоже, Никанор Иванович (“уж такой великатный, а губы, мать моя, – малина, совсем малина”) пользуется большей благосклонностью Агафьи Тихоновны, чем все остальные женихи. У нее есть два пути, чтобы это доказать статистически.
1) Суммировать все проявления благосклонности со стороны невесты: взгляды упоминания в разговоре, – и сопоставить полученное распределение с равномерным. Поскольку количество наблюдений возросло, есть шанс, что различия окажутся достоверными.
2) Сопоставить два эмпирических распределения – взгляда и упоминаний в разговоре, – с тем, чтобы показать, что они совпадают между собой, то есть и во взглядах, и в словах Агафья Тихоновна придерживается одинаковой системы предпочтений. Проанализируем оба варианта сопоставлений. В первом случае мы будем решать уже известную нам задачу сопоставления эмпирического распределения с теоретическим. Во втором случае мы будем сопоставлять два эмпирических распределения. Первый вариант развития шутливого примера: увеличение количества наблюдений
Вначале создадим таблицу эмпирических частот, в которой будут суммированы все замеченные проявления благосклонности невесты.
Таблица 4.3
Распределение проявлений благосклонности невесты между женихами
Женихи | Никанор Иванович | Иван Кузьмич | Иван Павлович | Балтазар Балтазарыч | Всего |
Количество проявлений |
Теперь сформулируем гипотезы.
Н0: Распределение проявлений благосклонности невесты (взгляды и упоминания в разговоре) не отличается от равномерного распределения. H1: Распределение проявлений благосклонности невесты отличается от равномерного распределения.. Все расчеты произведем в таблице по алгоритму.
Таблица 4.4
Расчет критерия χ2 при сопоставлении проявлений благосклонности Агафьи Тихоновны с равномерным распределением
Разряды – женихи | Эмпирические частоты | Теоретическая частота суммарных проявлений | (fэj-fт) | (fэj-fт)2 | (fэj-fт)2/ fт | |
| Ник. Ив. Ив. Куз. Ив. Пав. Бал. Бал. | -6 -6 | 8,47 2,12 2,12 | |||
Суммы | 12,71 | |||||
χ2эмп=12,71
χ2эмп> χ2кр.
Ответ: H0 отклоняется, принимается Н1. Распределение проявлений благосклонности невесты между женихами отличается от равномерного распределения (р<0,01).
На этом примере мы убедились, что увеличение числа наблюдений повышает достоверность результата, если, конечно, в новых наблюдениях воспроизводится прежняя тенденция различий.
Второй вариант развития шутливого примера: сопоставление двух эмпирических распределений
Теперь мы должны ответить на вопрос, одинаковая ли система предпочтений проявляется во взгляде Агафьи Тихоновны и ее словах?
Сформулируем гипотезы. Н0: Распределения невербально и вербально выражаемых предпочтений не различаются между собой.
H1: Распределения невербально и вербально выражаемых предпочтений различаются между собой.
Для подсчета теоретических частот нам теперь придется составить специальную таблицу (Табл. 4.5). Ячейки в двух столбцах слева обозначим буквами. Для каждой из них теперь будет подсчитана особая, только к данной ячейке относящаяся, теоретическая частота. Это обусловлено тем, что количества взглядов и словесных отзывов невесты о женихах неравны; взглядов 32, а словесных отзывов – 36. Мы должны всякий раз учитывать эту пропорцию.
Таблица 4.5
Эмпирические и теоретические частоты взглядов и упоминаний о жениха
Разряды – женихи | Эмпирические частоты | Суммы | Теоретические частоты | |||
взгляда | Упоминаний в разговоре | взгляда | Упоминаний в разговоре | |||
Ник. Ив. Ив. Куз. Ив. Пав. Бал. Бал. | 14 А 5 В 8 Д 5 Ж | 15 Б 6 Г 9 Е 6 З | 13,63 А 5,17 В 7,99 Д 5,17 Ж | 15,37 Б 5,83 Г 9,01 Е 5,83 З | ||
Суммы | ||||||
Рассчитаем эту пропорцию. Всего проявлений благосклонности отмечено 68, из них 32 – взгляды и 36 – словесные высказывания. Доля взглядов составит 32/68=0,47; доля упоминаний – 36/68=0,53.
Итак, во всех строках взгляды должны были бы составлять 0,47 всех проявлений по данной строке, а упоминания в разговоре – 0,53 всех проявлений. Теперь, зная суммы проявлений по каждой строке, мы можем рассчитать теоретические частоты для каждой ячейки Табл. 4.5.
fАтеор=29*0,47=13,63
fБтеор=29*0,53=15,37
fВтеор=11*0,47=5,17
fГтеор=11*0,53=5,83
fдтеор=17*0,47=7,99
fEтеор=17*0,53=9,01
fЖтеор=110,47=5,17
fЗтеор=11*0,53=5,83
Ясно, что сумма теоретических частот по строкам будет равняться сумме всех проявлений по данной строке. Например,
fАтеор fБтеор=13.63 15,37=29
fВтеор fГтеор=5,17 5,83=11
fДтеор fЕтеор=7,99 9,01=17 и т.д.
При такого рода подсчетах лучше всякий раз себя проверить. Теперь мы можем вывести общую формулу подсчета fтеордля сопоставления двух или более эмпирических распределений:
Соответствующими строкой и столбцом будут та строка и тот столбец, на пересечении которых находится данная ячейка таблицы. Теперь нам лучше всего сделать развертку Табл. 4.5, представив все ячейки от А до Ж в виде первого столбца – это будет столбец эмпирических частот. Вторым столбцом будут записаны теоретические частоты. Далее будем действовать по уже известному алгоритму. В третьем столбце будет представлены разности эмпирических и теоретических частот, в четвертом – квадраты этих разностей, а в пятом – результаты деления этих квадратов разностей на соответствующие каждой строке теоретические частоты. Сумма в нижнем правом углу таблицы и будет представлять собой эмпирическую величину % (Табл. 4.6).
Таблица 4.6
Расчет критерия χ2 при сопоставлении распределений невербальных и вербальных признаков благосклонности невесты
Ячейки таблицы частот | Эмпирическая частота взгляда (fэj) | Теоретическая частота (fт) | (fэj-fт) | (fэj-fт)2 | (fэj-fт)2/ fт | |
А Б В Г Д Е Ж З | 13,63 15,37 5,17 5,83 7,99 9,01 5,17 5,83 | 0,37 -0,37 -0,17 0,17 0,01 -0,01 -0,17 0,17 | 0,14 0,14 0,03 0,02 0,00 0,00 0,03 0,02 | 0,01 0,01 0,01 0,00 0,00 0,00 0,01 0,00 | ||
Суммы | 0,04 | |||||
Число степеней свободы при сопоставлении двух эмпирических распределений определяется по формуле:
v=(k-1)·(c-1)
где k – количество разрядов признака (строк в таблице эмпирических частот);
с – количество сравниваемых распределений (столбцов в таблице эмпирических частот).
В данном случае таблицей эмпирических частот является левая, эмпирическая часть таблицы 4.5, а не на ее развертка (Табл. 4.6). Количество разрядов – это количество женихов, поэтому k=4. Количество сопоставляемых распределений с=2. Итак, для данного случая,
v=(4-l)(2-t)=3
Определяем по Табл. IX Приложения 1 критические значения для ν=З:
Ответ: Н0 принимается. Распределения невербально и вербально выражаемых невестой предпочтений не различаются между собой.
Итак, Агафья Тихоновна весьма последовательна в проявлении своих предпочтений, хотя, по-видимому, сама этого пока не замечает.
Иллюстрация 2
Третий вариант развития шутливого примера: сопоставление встречных выборов
К сожалению, в этом пункте мы от комедии вынуждены перейти к драме – истинной драме любви. Ибо, судя по тексту пьесы, проявляемые женихами признаки влюбленности и симпатии по отношению к невесте отнюдь не соответствуют ее собственной системе предпочтений. У Ивана Павловича, а, главное, у Никанора Ивановича, которому невестой отдается столь явное предпочтение, проскальзывают в разговоре по большей части как раз отрицательные и задумчиво-неодобрительные отзывы о невесте: “Нос велик… Нет, не то, не то… Я даже думаю, что вряд ли она знакома с обхождением высшего общества. Да и знает ли она еще по-французски”.
Благосклонных отзывов (“А сказать правду – мне понравилась она потому, что полная женщина” и т. п.) поступило:
от Никанора Ивановича – ни одного;
от Ивана Кузьмича – 15*
от Ивана Павловича – 6*
от Балтазара Балтазарыча – 18.
Попробуем ответить на вопрос: согласуются ли распределения (благосклонных отзывов невесты о женихах и женихов о невесте?
Мы видим, что это действительно особая задача. Мы сопоставляем два эмпирических распределения с совпадающей классификацией разрядов, но в одном случае это распределение реакций одного человека на четверых других, а в другом случае это реакции четырех человек на одного и того же человека.
Такая модель взаимных реакций может использоваться отнюдь не только в области брачных консультаций, но и в решении задач “построения команды”, выбора заместителя, подбора пар в тех видах деятельности, где требуется активное постоянное взаимодействие, в исследованиях социальной перцепции и взаимного влияния, в тренинге сенситивности и др.
Сформулируем гипотезы.
Н0: Распределение положительных отзывов невесты совпадает с распределением положительных отзывов женихов.
H1: Распределение положительных отзывов невесты не совпадает с распределением положительных отзывов женихов.
Построим таблицу для подсчета теоретических частот.
Таблица 4.7
Эмпирические и теоретические частоты положительных высказываний невесты о женихах и женихов о невесте
Эмпирические частоты | Суммы | Теоретические частоты | ||||
Разряды-женихи | Положительных высказываний невесты о женихах | Положительных высказываний женихов о невесте | Положительных высказываний невесты о женихах | Положительных высказываний женихов о невесте | ||
Ник. Ив. Ив. Куз. Ив. Пав. Бал. Бал. | 15 А 6 В 9 Д 6 Ж | 0 Б 15 Г 6 Е 18 З | 7,20 А 10,08 В 7,20 Д 11,52 Ж | 7,80 Б 10,92 Г 7,80 Е 12,48 З | ||
Суммы | ||||||
Теоретические частоты рассчитываем по уже известной формуле:
fа теор=15*36/75=7,20
fБ теор=15*39/75=7,80
fВ теор=21*36/75=10,08
fГ теор=21*39/75=10,92
fД теор=15*36/75=7,20
fЕтеор=15*39/75=7,80
fЖтеор=24*36/75=11,52
fЗтеор=24*39/75=12,48
Суммы теоретических частот по строкам совпадают. Все дальнейшие расчеты выполним в таблице по алгоритму.
Таблица 4.8
Расчет критерия χ2 при сопоставлении распределений высказываний невесты о женихах и женихов о невесте
Ячейки таблицы частот | Эмпирическая частота взгляда (fэj) | Теоретическая частота (fт) | (fэj-fт) | (fэj-fт)2 | (fэj-fт)2/ fт | |
А Б В Г Д Е Ж З | 7,20 7,80 10,08 10,92 7,20 7,80 11,52 12,48 | 7,80 -7,80 -4,08 4,08 1,80 -1,80 -5,52 5,52 | 60,84 60,84 16,65 16,65 3,24 3,24 30,47 30,47 | 8,45 7,80 1,65 1,52 0,45 0,42 2,64 2,44 | ||
Суммы | 25,37 | |||||
Определим число степеней свободы V по количеству строк k и столбцов с в левой части Табл. 4.7: (k=4, c=2).
v=(k-1)(c-1)
Критические значения χ2 для ν=3 нам уже известны:
Ответ: Н0 отвергается. Принимается H1. Распределение положительных отзывов предпочтений невесты не совпадает с распределением положительных отзывов женихов (ρ<0,01).
Итак, если бы Иван Кузьмич Подколесин не сбежал, Агафью Тихоновну могло бы ожидать не меньшее разочарование: предпочитаемый ею Никанор Иванович, “тонкого поведения человек”, ее отвергает.
Мы не рассмотрели лишь третью группу возможных гипотез в методе χ2. Они, как мы помним, касаются сопоставлений одновременно 3 и более распределений. Принцип расчетов там такой же, как и при сопоставлении двух эмпирических распределений. Это касается и формулы расчета теоретических частот, и алгоритма последующих расчетов.
Рассмотрим особые случаи в применении метода χ2 .
§
1. В случае, если число степеней свободы ν=l, т. е. если признак принимает всего 2 значения, необходимо вносить поправку на непрерывность[16].
2. Если признак варьирует в широком диапазоне (например, от 10 до
140 сек. и т.п.), возникает необходимость укрупнять разряды.
Особый случай 1: поправка на непрерывность для признаков, которые принимают всего 2 значения
Поправка на непрерывность вносится при следующих условиях: а) когда эмпирическое распределение сопоставляется с равномерным распределением, и количество разрядов признака k=2, a ν=k—1=1;
б) когда сопоставляются два эмпирических распределения, и количество разрядов признака равно 2, т.е. и количество строк k=2, и количество столбцов с=2, и ν=(k—l)*(c—1)=1.
Вариант “а”: поправка на непрерывность при сопоставлении эмпирического распределения с равномерным. Это тот случай сопоставлений, когда мы, говоря простым языком, проверяем, поровну ли распределились частоты между двумя значениями признака.
Пример с поправкой на непрерывность.
В исследовании порогов социального атома[17] профессиональных психологов просили определить, с какой частотой встречаются в их записной книжке мужские и женские имена коллег-психологов. Попытаемся определить, отличается ли распределение, полученное по записной книжке женщины-психолога X, от равномерного распределения. Эмпирические частоты представлены в Табл. 4.9
Таблица 4.9
Эмпирические частоты встречаемости имен мужчин и женщин в записной книжке психолога X
Сформулируем гипотезы.
Н0: Распределение мужских и женских имён в записной книжке X не отличается от равномерного распределения.
H1: Распределение мужских и женских имен в записной книжке X отличается от равномерного распределения.
Количество наблюдений n=67; количество значений признака k=2. Рассчитаем теоретическую частоту:
Число степеней свободы ν=k –1=1.
Далее все расчеты производим по известному алгоритму, но с одним добавлением: перед возведением в квадрат разности частот мы должны уменьшить абсолютную величину этой разности на 0,5 (см. Табл. 4.10, четвертый столбец).
Таблица 4.10
Расчет критерия % при сопоставлении эмпирического распределения имен с теоретическим равномерным распределением
Разряды – принадлежность к тому или иному полу | Эмпирическая частота взгляда (fэj) | Теоретическая частота (fт) | (fэj-fт) | (fэj-fт-0,5) | (fэj-fт-0,5)2 | (fэj-fт-0,5)2/ fт | |
Мужчины Женщины | 33,5 33,5 | -11,5 11,5 | 3,61 3,61 | ||||
Суммы | 7,22 | ||||||
Для ν=l определяем по Табл. IX Приложения 1 критические значения:
Ответ: Н0 отклоняется, принимается Н1. Распределение мужских и женских имен в записной книжке психолога X отличается от равномерного распределения (р<0,01).
Вариант “б”: поправка на непрерывность при сопоставлении двух эмпирических распределений
Попытаемся определить, различаются ли распределения мужских и женских имен у психолога X и психолога С, тоже женщины. Эмпирические частоты приведены в Табл. 4.11.
Таблица 4.11
Эмпирические частоты встречаемости имен мужчин и женщин в записных книжках психолога X. и психолога С.
Мужчин | Женщин | Всего человек | |
Психолог Х. Психолог С. | 22 А 59 В | 45 Б 109 Г | |
Суммы |
Сформулируем гипотезы. H0: Распределения мужских и женских имен в двух записных книжках
не различаются.
H1: Распределения мужских и женских имен в двух записных книжках различаются между собой. Теоретические частоты рассчитываем по уже известной формуле:
А именно, для разных ячеек таблицы эмпирических частот,
fАтеор=67*81/235=23,09
fб теор =67*154/235=43.91
fВ теор=168*81/235=57,91
fГ теор=168*154/235=110,09
Число степеней свободы ν=(k—1)*(с—1)=1 Все дальнейшие расчеты проводим по алгоритму (Табл. 4.12)
Таблица 4.12
Расчет критерия при сопоставлении двух эмпирических распределений мужских и женских имен
Ячейки таблицы эмпирических частот | Эмпирическая частота взгляда (fэj) | Теоретическая частота (fт) | (fэj-fт) | (fэj-fт-0,5) | (fэj-fт-0,5)2 | (fэj-fт-0,5)2/ fт | |
А Б В Г | 23,09 43,91 57,91 110,09 | -1,09 1,09 1,09 -1,09 | 0,59 0,59 0,59 0,59 | 0,35 0,35 0,35 0,35 | 0,015 0,008 0,006 0,003 | ||
Суммы | 235,00 | 0,032 | |||||
Критические значения χ2 при ν=l нам известны по предыдущему примеру:
Ответ: Н0 принимается. Распределения мужских и женских имен в записных книжка двух психологов совпадают.
Поправки на непрерывность и всех остальных подсчетов можно избежать, если использовать по отношению к подобного рода задачам метод φ* Фишера (см. параграф 5.4).
§
Тест Мюнстерберга для измерения избирательности перцептивного внимания в адаптированном варианте М.Д. Дворяшиной (1976) предъявлялся студентам факультета психологии Ленинградского университета (n1=156) и артистам балета Мариинского театра (n2=85). Материал методики состоит из бланка с набором букв русского алфавита, в случайном порядке перемежающихся. Среди этого фона скрыто 24 слова разной степени сложности: “факт”, “хоккей”, “любовь”, “конкурс”, “психиатрия” и т.п. Задача испытуемого возможно быстрее отыскать их и подчеркнуть (Дворяшина М.Д., 1976, с. 124). Совпадают ли распределения количества ошибок (пропусков слов) в двух выборках (Табл. 4.13)?
Таблица 4.13
Эмпирические частоты пропуска слов в тесте Мюнстерберга в двух выборках испытуемых (по данным М.Д. Дворяшиной, Е.В. Сидоренко, 1973)
разряды | Эмпирические частоты пропуска слов | ||
В группе студентов (n1=156) | В группе артистов балета (n2=85) | Суммы | |
I. 0 пропусков II. 1 пропуск III. 2 пропуска IV. 3 пропуска V. 4 пропуска VI. 5 пропусков VII. 6 пропусков VIII. 7 пропусков IX. 8 пропусков X. 9 пропусков | |||
Суммы |
Сформулируем гипотезы.
Н0: Распределения ошибок (пропусков слов) в выборках студентов и артистов балета не различаются между собой.
H1: Распределения ошибок (пропусков слов) в выборках студентов и артистов балета различаются между собой.
Прежде чем перейти к расчету теоретических частот, обратим внимание на последние 4 значения признака, от 6 пропусков и ниже. Очевидно, что fтеор для любой из ячеек последних 4 строк таблицы будет меньше 5. Например, для ячейки, отмеченной кружком:
fтеор=5*85/241=1,763
Полученная теоретическая частота меньше 5.
Для того, чтобы решить, какие разряды нам следует укрупнить, чтобы fтеор была не меньше 5, выведем формулу расчета минимальной суммы частот по строке по формуле:
В данном случае столбцом с наименьшим количеством наблюдений является столбец, относящийся к выборке артистов балета (n=85). Определим минимальную сумму частот для каждой строки: Минимальная сумма по строке =5*241/85=14,16 Мы видим, что для получения такой суммы нам недостаточно объединения последних 4 строк Табл. 4.13, так как сумма частот по ним меньше 14 (5 3 2 1=11), а нам необходима сумма частот, превышающая 14. Следовательно, придется объединять в один разряд пять нижних строк Табл. 4.13: теперь любое количество пропусков от 5 до 9 будет составлять один разряд.
Однако это еще не все. Мы видим, далее, что в строке “4 пропуска” сумма составляет всего 8. Значит, ее необходимо объединить со следующей строкой. Теперь и 3, и 4 пропуска будут входить в один разряд. Все остальные суммы по строкам больше 14, поэтому мы не нуждаемся в дальнейшем укрупнении разрядов.
Эмпирические частоты по укрупненным разрядам представлены в Табл. 4.14.
Таблица 4.14
Эмпирические частоты пропуска слов по укрупненным разрядам в двух выборках испытуемых
Разряды | Эмпирические частоты пропуска слов | ||||
В группе студентов (n1=156) | В группе артистов балета (n2=85) | Суммы | |||
I. 0 пропусков II. 1 пропуск III. 2 пропуска IV. 3-4 пропуска V. 5-9 пропусков | А В Д Ж И | Б Г Е З К | |||
Суммы | |||||
Исследователю бывает огорчительно терять информацию, заведомо утрачиваемую при укрупнении разрядов. Например, в данном случае нас может интересовать, удалось ли сохранить специфический для второй выборки спад частот на 3 и 4 пропусках и резкий их подъем на 5 пропусках (Рис. 4.7).
Сравним графики на Рис. 4.7 и Рис. 4.8. Мы видим, что спад частот во второй выборке на 3-х и 4-х пропусках сохранился, а спад на 2-х пропусках в первой выборке стал еще более заметным. В то же время все возможные различия в частотах в диапазоне от 5-и до 9-и пропусков теперь оцениваются только глобально, по соотношению общих сумм частот в этих диапазонах. По графику на Рис. 4.8 мы уже не можем определить, какое максимальное количество пропусков встречается в первой группе и какое – во второй. Сопоставление распределений на этом конце становится более грубым.
Если бы у нас было больше испытуемых в выборке артистов балета, то, возможно, удалось бы сохранить подъем частоты на 5-и пропусках. Сейчас же нам придется довольствоваться сопоставлением по данным укрупненным разрядам.
Перейдем к подсчету теоретических частот для каждой ячейки Табл. 4.14
fА теор=115*156/241=74,44
fБ теор=115*85/241=40,56
fВ теор=47*156/241=30,41
fГ теор=47*85/241=16,59
fД теор=27*156/241=17,47
fЕ теор=27*85/241=9,53 fЖ теор=27*156/241=17,47
fЗ теор=27*85/241=9,53 fИ теор=25*156/241=16,18 fК теор=25*85/241=8,82
Определим количество степеней свободы V по формуле: ν=(k-l)*(c- l) где k – количество строк (разрядов),
с – количество столбцов (выборок). Для данного случая: ν=(5-l)*(2-l)=4
Все дальнейшие расчеты произведем в таблице по Алгоритму 13. Поправка на непрерывность не требуется, так как v>l.
Таблица 4.15
Расчет критерия χ2 при сопоставлении двух эмпирических распределений пропусков слов в тесте Мюнстерберга (n1=156, n2=85)
Ячейки таблицы частот | Эмпирическая частота взгляда (fэj) | Теоретическая частота (fт) | (fэj-fт) | (fэj-fт)2 | (fэj-fт)2/ fт |
А Б В Г Д Е Ж З И К | 74,44 46,56 30,41 16,59 17,47 9,53 17,47 9,53 16,18 8,82 | 18,56 -18,56 -3,41 3,41 -6,47 6,47 2,53 -2,53 -11,18 11,18 | 344,47 344,47 11,63 11,63 41,86 41,86 6,401 6,401 124,99 124,99 | 4,63 8,49 0,38 0,70 2,40 4,40 0,37 0,67 7,72 14,17 | |
Суммы | 0,00 | 43,95 |
По Табл. IX Приложения 1 определяем критические значения при ν =4:
Ответ: Н0 отвергается. Принимается Н1. Распределения про-пусков слов в выборках студентов и артистов балета различаются между собой (р<0,01).
В распределении ошибок у артистов балета можно заметить два выраженных максимума (0 пропусков и 5 пропусков), что может указывать на два возможных источника ошибок[18].
4.3. λ – критерий Колмогорова-Смирнова
Назначение критерия
Критерий X предназначен для сопоставления двух распределений:
а) эмпирического с теоретическим, например, равномерным или
нормальным;
б) одного эмпирического распределения с другими эмпирическим
распределением.
Критерий позволяет найти точку, в которой сумма накопленных расхождений между двумя распределениями является наибольшей, и оценить достоверность этого расхождения.
Описание критерия
Если в методе χ2 мы сопоставляли частоты двух распределений отдельно по каждому разряду, то здесь мы сопоставляем сначала частоты по первому разряду, потом по сумме первого и второго разрядов, потом по сумме первого, второго и третьего разрядов и т. д. Таким образом, мы сопоставляем всякий раз накопленные к данному разряду частоты.
Если различия между двумя распределениями существенны, то в какой-то момент разность накопленных частот достигнет критического значения, и мы сможем признать различия статистически достоверными. В формулу критерия λвключается эта разность. Чем больше эмпирическое значение λ, тем более существенны различия.
Гипотезы
Н0: Различия между двумя распределениями недостоверны (судя по точке максимального накопленного расхождения между ними).
H1: Различия между двумя распределениями достоверны (судя по точке максимального накопленного расхождения между ними).
§
Ввыборке здоровых лиц мужского пола, студентов технических и военно-технических вузов в возрасте от 19-ти до 22 лет, средний возраст 20 лет, проводился тест Люшера в 8-цветном варианте. Установлено, что желтый цвет предпочитается испытуемыми чаще, чем отвергается (Табл. 4.16). Можно ли утверждать, что распределение желтого цвета по 8-и позициям у здоровых испытуемых отличается от равномерного распределения?
Таблица 4.16
Эмпирические частоты попадания желтого цвета на каждую из 8 позиций (n=102)
Сформулируем гипотезы.
H0: Эмпирическое распределение желтого цвета по восьми позициям не отличается от равномерного распределения.
H1: Эмпирическое распределение желтого цвета по восьми позициям отличается от равномерного распределения.
Теперь приступим к расчетам, постепенно заполняя результатами таблицу расчета критерия λ. Все операции лучше прослеживать по Табл. 4.17, тогда они будут более понятными.
Занесем в таблицу наименования (номера) разрядов и соответствующие им эмпирические частоты (первый столбец Табл. 4.17).Затем рассчитаем эмпирические частости f* по формуле:
f*j = fj /n
где fj – частота попадания желтого цвета на данную позицию;
n – общее количество наблюдений; j – номер позиции по порядку.
Запишем результаты во второй столбец (см. Табл. 4.17). Теперь нам нужно подсчитать накопленные эмпирические частости Σf*. Для этого будем суммировать эмпирические частости f*. Например, для 1-го разряда накопленная эмпирическая частость будет равняться эмпирической частости 1-го разряда, Σf*1=0,235[20].
Для 2-го разряда накопленная эмпирическая частость будет представлять собой сумму эмпирических частостей 1-го и 2-го разрядов:
Σf*1 2=0,235 0,147=0,382
Для 3-го разряда накопленная эмпирическая частость будет представлять собой сумму эмпирических частостей 1-го, 2-го и 3-го разрядов:
Σf*1 2 3=0,235 0,147 0,128=0,510
Мы видим, что можно упростить задачу, суммируя накопленную эмпирическую частость предыдущего разряда эмпирической частостью данного разряда, например, для 4-го разряда:
Σf*1 2 3 4=0,510 0,078=0,588
Запишем результаты этой работы в третий столбец.
Теперь нам необходимо сопоставить накопленные эмпирические частости с накопленными теоретическими частостями. Для 1-го разряда теоретическая частость определяется по формуле:
где k – количество разрядов (в данном случае – позиций цвета).
Для рассматриваемого примера:
f*теор=1/8=0,125
Эта теоретическая частость относится ко всем 8-и разрядам. Действительно, вероятность попадания желтого (или любого другого) цвета на каждую из 8-и позиций при случайном выборе составляет 1/8, т.е. 0,125.
Накопленные теоретические частости для каждого разряда определяем суммированием. Для 1-го разряда накопленная теоретическая частость равна теоретической частости попадания в разряд:
f* т 1=0,125
Для 2-го разряда накопленная теоретическая частость представляет собой сумму теоретических частостей 1-го и 2-го разрядов: f*т 1 2=0,125 0,125=0,250
Для 3-го разряда накопленная теоретическая частость представ
ляет собой сумму накопленной к предыдущему разряду теоретической
частости с теоретической частостью данного разряда:
f*т 1 2 3=0,250 0,125=0,375
Можно определить теоретические накопленные частости и путем!
умножения:
Sf* т j=f* теор j
где f*теор – теоретическая частость; j – порядковый номер разряда.
Занесем рассчитанные накопленные теоретические частости в четвертый столбец таблицы (Табл. 4.17).
Теперь нам осталось вычислить разности между эмпирическими и теоретическими накопленными частостями (столбцы 3-й и 4-й). В пятый столбец записываются абсолютные величины этих разностей, обозначаемые как d.
Определим по столбцу 5, какая из абсолютных величин разности является наибольшей. Она будет называться dmax. В данном случае dmax=0,135.
Теперь нам нужно обратиться к Табл. X Приложения 1 для определения критических значений dmax при n=102.
Таблица 4.17
Расчет критерия при сопоставлении распределения выборов желтого цвета с равномерным распределением (n=102)
Очевидно, что чем больше различаются распределения, тем больше и различия в накопленных частостях. Поэтому нам не составит труда распределить зоны значимости и незначимости по соответствующей оси:
Очевидно, что чем больше различаются распределения, тем больше и различия в накопленных частостях. Поэтому нам не составит труда распределить зоны значимости и незначимости по соответствующей оси:
dэмп=0,135
dэмп=dкр.
Ответ: Н0 отвергается при р=0,05. Распределение желтого цвета по восьми позициям отличается от равномерного распределения. Представим все выполненные действия в виде алгоритма
АЛГОРИТМ 14
Расчет абсолютной величины разности d между эмпирическим и равномерным распределениями
1.Занести в таблицу наименования разрядов и соответствующие им
эмпирические частоты (первый столбец).
2. Подсчитать относительные эмпирические частоты (частости) для
каждого разряда по формуле:
f*эмп=fэмп/n
где fэмп – эмпирическая частота по данному разряду;
п – общее количество наблюдений. Занести результаты во второй столбец.
3. Подсчитать накопленные эмпирические частости Σf*j по формуле:
где Σf*j=Σf*j-1 f*j – частость, накопленная на предыдущих разрядах; j – порядковый номер разряда; f*j– эмпирическая частость данного /-го разряда. Занести результаты в третий столбец таблицы.
4. Подсчитать накопленные теоретические частости для каждого раз
ряда по формуле:
Σf*т j=Σf*Т j-1 f*т j где Σf*т j-1 – теоретическая частость, накопленная на предыдущих
разрядах;
j – порядковый номер разряда;
f*тj– теоретическая частость данного разряда. Занести результаты в третий столбец таблицы.
5. Вычислить разности между эмпирическими и теоретическими нако
пленными частостями по каждому разряду (между значениями 3-го
и 4-го столбцов).
6. Записать в пятый столбец абсолютные величины полученных раз
ностей, без их знака. Обозначить их как d.
7. Определить по пятому столбцу наибольшую абсолютную величину
разности – dmax.
8. По Табл. X Приложения 1 определить или рассчитать критические
значения dmaxдля данного количества наблюдений n.
Если dmaxравно критическому значению d или превышает его, различия между распределениями достоверны.
§
Интересно сопоставить данные, полученные в предыдущем примере, с данными обследования X. Кларом 800 испытуемых (Klar H.,1974, р. 67). X.Кларом было показано, что желтый цвет является единственным цветом, распределение которого по 8 позициям не отличается от равномерного. Для сопоставлений им использовался метод % Полученные им эмпирические частоты представлены в Табл. 4.18.
Таблица 4.18
Эмпирические частоты попадания желтого цвета на каждую из 8 позиций в исследовании X. Клара (по: Klar H., 1974) (n=800)
Сформулируем гипотезы.
Н0: Эмпирические распределения желтого цвета по 8 позициям в отечественной выборке и выборке X. Клара не различаются.
H1: Эмпирические распределения желтого цвета по 8 позициям в отечественной выборке и выборке X. Клара отличаются друг от друга.
Поскольку в данном случае мы будем сопоставлять накопленные эмпирические частости по каждому разряду, теоретические частости нас не интересуют.
Все расчеты будем проводить в таблице по алгоритму 15.
АЛГОРИТМ 15
Расчет критерия λ при сопоставлении двух эмпирических распределений
1. Занести в таблицу наименования разрядов и соответствующие им эмпирические
частоты, полученные в распределении 1 (первый столбец) и в распределении 2
(второй столбец).
2. Подсчитать эмпирические частости по каждому разряду для распределения 1
по формуле:
f*э=fэ/n1
где fэ – эмпирическая частота в данном разряде;
п1 – количество наблюдений в выборке. Занести эмпирические частости распределения 1 в третий столбец.
3. Подсчитать эмпирические частости по каждому разряду для распределения 2
по формуле:
f*э=fэ/n2
где fэ – эмпирическая частота в данном разряде;
n2 – количество наблюдений во 2-й выборке.
Занести эмпирические частости распределения 2 в четвертый столбец таблицы.
4. Подсчитать накопленные эмпирические частости для распределения 1 по формуле:
где Σf*j-1 – частость, накопленная на предыдущих разрядах;
j – порядковый номер разряда;
f*j-1– частость данного разряда.
Полученные результаты записать в пятый столбец.
5. Подсчитать накопленные эмпирические частости для распределения 2 по той
же формуле и записать результат в шестой столбец.
6. Подсчитать разности между накопленными частостями по каждому разряду.
Записать в седьмой столбец абсолютные величины разностей, без их знака.
Обозначить их как d.
7. Определить по седьмому столбцу наибольшую абсолютную величину разности
8. Подсчитать значение критерия λ по формуле:
где п1 – количество наблюдений в первой выборке;
n2 – количество наблюдений во второй выборке.
9. По Табл. XI Приложения 1 определить, какому уровню статистической зна-
чимости соответствует полученное значение λ.
Если λэмп>1,36, различия между распределениями достоверны.
Последовательность выборок может быть выбрана произвольно, так как расхождения между ними оцениваются по абсолютной величине разностей. В нашем случае первой будем считать отечественную выборку, второй – выборку Клара.
Таблица 4.19
Расчет критерия при сопоставлении эмпирических распределений желтого цвета в отечественной выборке (n1=102) и выборке Клара (n2=800)
Максимальная разность между накопленными эмпирическими частостями составляет 0,118 и падает на второй разряд.
В соответствии с пунктом 8 алгоритма 15 подсчитаем значение Я,:
По Табл. XI Приложения 1 определяем уровень статистической значимости полученного значения: р=0,16
Построим для наглядности ось значимости.
На оси указаны критические значения λ, соответствующие принятым уровням значимости: λ0,05=1,36, λ0,01=1,63.
Зона значимости простирается вправо, от 1,63 и далее, а зона незначимости – влево, от 1,36 к меньшим значениям.
λэмп>λкр
Ответ: Н0 принимается. Эмпирические распределения желтого цвета по 8 позициям в отечественной выборке и выборке X. Клара совпадают. Таким образом, распределения желтого цвета в двух выбор-ках не различаются, но в то же время они по-разному соотносятся с равномерным распределением: у Клара отличий от равномерного распределения не обнаружено, а в отечественной выборке различия обнаружены (ρ<0,05). Возможно, картину могло бы прояснить применение другого метода?
Е.В. Гублер (1978) предложил сочетать использование критерия λ, с критерием φ* (угловое преобразование Фишера).
Об этих возможностях сочетания методов λ и φ* мы поговорим в следующей главе (см. пример 4 п.5.2).
4.4. Задачи для самостоятельной работы.
ВНИМАНИЕ!
При выборе способа решения задачи рекомендуется пользоваться
АЛГОРИТМОМ 16
Задача 6
В проективной методике X. Хекхаузена (модификация ТАТ) испытуемому последовательно предъявляются 6 картин. Всякий раз он сначала рассматривает картину в течение 20 сек, а затем в течение 5 минут пишет по ней рассказ, стараясь, в соответствии с инструкцией, проявить “максимум фантазии и воображения”. После того, как испытуемый закончит писать первый рассказ, ему предъявляется вторая картина, и т. д. В данном исследовании разным испытуемым картины предъявлялись в разном порядке, так что каждая картина оказывалась первой, второй, третьей и т.д. примерно одинаковое количество раз (Сидоренко Е. В., 1977).
При обследовании 113студентов в возрасте от 20 до 35 лет; (средний возраст 23,2 года, 67 мужчин, 46 женщин) было установле-но, что в рассказах по картинам с условными названиями “Препо-даватель и ученик” и “Мастер измеряет деталь” словесные формулировки, отражающие “боязнь неудачи”, встречаются гораздо чаще, чем в рассказах по другим картинам, в особенности по картине “Улыбающийся юноша” (см. Табл. 4.20).
Вопросы:
1) Можно ли утверждать, что картины методики обладают разной по
будительной силой в отношении мотивов: а) “надежда на успех”; б)
боязнь неудачи”?
2) Как следует из Табл. 4.20, нет почти ни одной картины, которая в
равной мере стимулировала бы мотив “надежда на успех” и мотив
“боязнь неудачи”. Можно ли считать стимульный набор методики
Хекхаузена неуравновешенным по направленности воздействия?
Таблица 4.20
Эмпирическое распределение словесных формулировок, отражающих мотивы “надежда на успех” и “боязнь неудачи” (n=113)
Задача 7
В процессе проведения транзактно-аналитических сессий установлено, что запреты на “психологические поглаживания[21]” встречаются снеодинаковой частотой. Например, многие участники тренинга признают у себя запрет “Не проси психологических поглаживаний у других людей”, а запрет “Не давай психологических поглаживаний самому себе” встречается гораздо реже (см. Табл. 4.21).
Таблица 4.21
Частота встречаемости запретов на психологические поглаживания (n=166)
Вопросы:
Можно ли считать, что распределение запретов не является равномерным?
Можно ли утверждать, что запрет “Не проси” встречается достоверно чаще остальных?
Задача 8
В социально-психологическом исследовании стереотипов мужественности Н. В. Стан (1992) выборке из 31 женщин с высшим образованием в возрасте от 22 до 49 лет (средний возраст 35 лет) предъявлялись напечатанные на отдельных карточках перечни качеств, характеризующих один из четырех типов мужественности: мифологический, национальный, современный и религиозный. Испытуемым предлагалось внимательно ознакомиться с предложенными описаниями и выбрать из них то, которое в большей степени соответствует их представлению об идеальном мужчине. Затем испытуемым предлагалось выбрать одну из 3 оставшихся карточек, а затем одну из двух оставшихся. Результаты эксперимента представлены в Табл. 4.22.
Таблица 4.22
Распределение частот предпочтений 4 типов мужественности
Вопросы:
1) Различаются ли распределения предпочтений, выявленные по
каждому из 4-х типов, между собой?
2) Можно ли утверждать, что предпочтение отдается какому-то
одному или двум из типов мужественности? Наблюдается ли
какая-либо групповая тенденция предпочтений?
ГЛАВА 5
§
Понятие многофункциональных критериев
Многофункциональные статистические критерии – это критерии, которые могут использоваться по отношению к самым разнообразным | данным, выборкам и задачам.
Это означает, что данные могут быть представлены в любой шкале, начиная от номинативной (шкалы наименований).
Это означает также, что выборки могут быть как независимыми, так и “связанными”, то есть мы можем с помощью многофункциональных критериев сравнивать и разные выборки испытуемых, и показатели одной и той же выборки, измеренные в разных условиях. Нижние границы выборок – 5 наблюдений, но возможно применение критериев и по отношению к выборкам с п=2, с некоторыми оговорками (см. разделы “Ограничения критерия φ*” и “Ограничения биномиального критерия m”)
Верхняя граница выборок задана только в биномиальном критерии – 50 человек. В критерии φ* Фишера верхней границы не существует – выборки могут быть сколь угодно большими.
Многофункциональные критерии позволяют решать задачи сопоставления уровней исследуемого признака, сдвигов в значениях исследуемого признака и сравнения распределений.
К числу многофункциональных критериев в полной мере относится критерий φ* Фишера (угловое преобразование Фишера) и, с некоторыми оговорками – биномиальный критерий m.
Многофункциональные критерии построены на сопоставлении долей, выраженных в долях единицы или в процентах. Суть критериев [состоит в определении того, какая доля наблюдений (реакций, выборов, испытуемых) в данной выборке характеризуется интересующим исследователя эффектом и какая доля этим эффектом не характеризуется.
Таким эффектом может быть:
a) определенное значение качественно определяемого признака – например, выражение согласия с каким-либо предложением; выбор правой дорожки из двух симметричных дорожек; отнесенность к определенному полу; присутствие фигуры отца в раннем воспоминании и др.
б) определенный уровень количественно измеряемого признака, например, получение оценки, превосходящей проходной балл; решение задачи менее чем за 20 сек; факт работы в команде, по численности превышающей 4-х человек; выбор дистанции в разговоре, превышающей 50 см, и др.
в) определенное соотношение значений или уровней исследуемого признака, например, более частый выбор альтернатив А и Б по сравнению с альтернативами В и Г; преимущественное проявление крайних значений признака, как самых высоких, так и самых низких; преобладание положительных сдвигов над отрицательными и др.
Итак, путем сведения любых данных к альтернативной шкале “Есть эффект – нет аффекта” многофункциональные критерии позволяют решать все три задачи сопоставлений – сравнения “уровней”, оценки “сдвигов” и сравнения распределений.
Критерий φ* применяется в тех случаях, когда обследованы две выборки испытуемых, биномиальный критерий m – в тех случаях, когда обследована лишь одна выборка испытуемых. Правила выбора одного из этих критериев отражены в Алгоритме 19.
5.2. Критерий φ* — угловое преобразование Фишера
Данный метод описан во многих руководствах (Плохинский Н.А., 1970; Гублер Е.В., 1978; Ивантер Э.В., Коросов А.В., 1992 и др.) Настоящее описание опирается на тот вариант метода, который был разработан и изложен Е.В. Гублером.
Назначение критерия φ*
Критерий Фишера предназначен для сопоставления двух выборок по частоте встречаемости интересующего исследователя эффекта.
Описание критерия
Критерий оценивает достоверность различий между процентными долями двух выборок, в которых зарегистрирован интересующий нас эффект.
Суть углового преобразования Фишера состоит в переводе процентных долей в величины центрального угла , который измеряется в радианах . Большей процентной доле будет соответствовать больший угол ф, а меньшей доле – меньший угол, но соотношения здесь не линейные:
где Р – процентная доля, выраженная в долях единицы (см. Рис. 5.1).
При увеличении расхождения между углами φ1 и φ2 и увеличения численности выборок значение критерия возрастает. Чем больше величина φ* , тем более вероятно, что различия достоверны.
Гипотезы
H0: Доля лиц, у которых проявляется исследуемый эффект, в выборке 1 не больше, чем в выборке 2.
H1: Доля лиц, у которых проявляется исследуемый эффект, в выборке 1 больше, чем в выборке 2.
Графическое представление критерияφ*
Метод углового преобразования несколько более абстрактен, чем остальные критерии.
Формула, которой придерживается Е. В. Гублер при подсчете значений φ, предполагает, что 100% составляют угол φ=3,142, то есть округленную величину π=3,14159… Это позволяет нам представить сопоставляемые выборки в виде двух полукругов, каждый из которых символизирует 100% численности своей выборки. Процентные доли испытуемых с “эффектом” будут представлены как секторы, образованные центральными углами φ. На Рис. 5.2 представлены два полукруга, иллюстрирующие Пример 1. В первой выборке 60% испытуемых решили задачу. Этой процентной доле соответствует угол φ=1,772. Во второй выборке 40% испытуемых решили задачу. Этой процентной доле соответствует угол φ =1,369.
Критерий φ* позволяет определить, действительно ли один из углов статистически достоверно превосходит другой при данных объемах выборок.
Ограничения критерияφ*
1. Ни одна из сопоставляемых долей не должна быть равной нулю. Формально нет препятствий для применения метода φ в случаях, когда доля наблюдений в одной из выборок равна 0. Однако в этих случаях результат может оказаться неоправданно завышенным (Гублер Е.В., 1978, с. 86).
2. Верхний предел в критерии φ отсутствует – выборки могут быть сколь угодно большими.
Нижний предел – 2 наблюдения в одной из выборок. Однако должны соблюдаться следующие соотношения в численности двух выборок:
а) если в одной выборке всего 2 наблюдения, то во второй должно быть не менее 30:
б) если в одной из выборок всего 3 наблюдения, то во второй должно быть не менее 7:
в) если в одной из выборок всего 4 наблюдения, то во второй должно быть не менее 5:
г) при n1,n2≥5 возможны любые сопоставления.
В принципе возможно и сопоставление выборок, не отвечающих этому условию, например, с соотношением n1=2, n2=15, но в этих случаях не удастся выявить достоверных различий.
Других ограничений у критерия φ* нет.
Рассмотрим несколько примеров, иллюстрирующих возможности
критерия φ*.
Пример 1: сопоставление выборок по качественно определяемому признаку.
Пример 2: сопоставление выборок по количественно измеряемому признаку.
Пример 3: сопоставление выборок и по уровню, и по распределению признака.
Пример 4: использование критерия φ* в сочетании с критерием X Колмогорова-Смирнова в целях достижения максимально точного результата.
§
В данном варианте использования критерия мы сравниваем процент испытуемых в одной выборке, характеризующихся каким-либо качеством, с процентом испытуемых в другой выборке, характеризующихся тем же качеством.
Допустим, нас интересует, различаются ли две группы студентов по успешности решения новой экспериментальной задачи. В первой группе из 20 человек с нею справились 12 человек, а во второй выборке из 25 человек – 10. В первом случае процентная доля решивших задачу составит 12/20·100%=60%, а во второй 10/25·100%=40%. Достоверно ли различаются эти процентные доли при данных n1и n2?
Казалось бы, и “на глаз” можно определить, что 60% значительно выше 40%. Однако на самом деле эти различия при данных n1, n2 недостоверны.
Проверим это. Поскольку нас интересует факт решения задачи, будем считать “эффектом” успех в решении экспериментальной задачи, а отсутствием эффекта – неудачу в ее решении.
Сформулируем гипотезы.
H0: Доля лиц, справившихся с задачей, в первой группе не больше, чем во второй группе.
H1: Доля лиц, справившихся с задачей, в первой группе больше, чем во второй группе.
Теперь построим так называемую четырехклеточную, или четырехпольную таблицу, которая фактически представляет собой таблицу эмпирических частот по двум значениям признака: “есть эффект” – “нет эффекта”.
Таблица 5.1
Четырехклеточная таблица для расчета критерия при сопоставлении двух групп испытуемых по процентной доле решивших задачу.
Группы | “Есть эффект”: задача решена | “Нет эффекта”: задача не решена | Суммы | ||||
| Количество испытуемых | % доля | Количество испытуемых | % доля | | ||
1 группа | (60%) | А | (40%) | Б | |||
2jЈynna | (40%) | В | (60%) | Г | |||
Суммы |
В четырехклеточной таблице, как правило, сверху размечаются столбцы “Есть эффект” и “Нет эффекта”, а слева – строки “1 группа” и “2 группа”. Участвуют в сопоставлениях, собственно, только поля (ячейки) А и В, то есть процентные доли по столбцу “Есть эффект”.
По Табл. XII Приложения 1 определяем величины φ, соответствующие процентным долям в каждой из групп.
Теперь подсчитаем эмпирическое значение φ* по формуле:
где φ1 – угол, соответствующий большей % доле;
φ2 – угол, соответствующий меньшей % доле;
n1 – количество наблюдений в выборке 1;
n2 – количество наблюдений в выборке 2.
В данном случае:
По Табл. XIII Приложения 1 определяем, какому уровню значимости соответствует φ*эмп=1,34:
р=0,09
Можно установить и критические значения φ*, соответствующие принятым в психологии уровням статистической значимости:
Построим “ось значимости”.
Полученное эмпирическое значение φ* находится в зоне незначимости.
Ответ: H0 принимается. Доля лиц, справившихся с задачей, впервой группе не больше, чем во второй группе.
Можно лишь посочувствовать исследователю, который считает существенными различия в 20% и даже в 10%, не проверив их достоверность с помощью критерия φ*. В данном случае, например, достоверными были бы только различия не менее чем в 24,3%.
Похоже, что при сопоставлении двух выборок по какому-либо качественному признаку критерий φ может нас скорее огорчить, чем обрадовать. То, что казалось существенным, со статистической точки зрения может таковым не оказаться.
Гораздо больше возможностей порадовать исследователя появляется у критерия Фишера тогда, когда мы сопоставляем две выборки по количественно измеренным признакам и можем варьировать “эффект .
Пример 2 – сопоставление двух выборок по количественно измеряемому признаку
В данном варианте использования критерия мы сравниваем процент испытуемых в одной выборке, которые достигают определенного уровня значения признака, с процентом испытуемых, достигающих этого уровня в другой выборке.
В исследовании Г. А. Тлегеновой (1990) из 70 юношей – учащихся ПТУ в возрасте от 14 до 16 лет было отобрано по результатам обследования по Фрайбургскому личностному опроснику 10 испытуемых с высоким показателем по шкале Агрессивности и 11 испытуемых с низким показателем по шкале Агрессивности. Необходимо определить, различаются ли группы агрессивных и неагрессивных юношей по показателю расстояния, которое они спонтанно выбирают в разговоре с сокурсником. Данные Г. А. Тлегеновой представлены в Табл. 5.2. Можно заметить, что агрессивные юноши чаще выбирают расстояние в 50 см или даже меньше, в то время как неагрессивные юноши чаще выбирают расстояние, превышающее 50 см.
Теперь мы можем рассматривать расстояние в 50 см как критическое и считать, что если выбранное испытуемым расстояние меньше или равно 50 см, то “эффект есть”, а если выбранное расстояние больше 50 см, то “эффекта нет”. Мы видим, что в группе агрессивных юношей эффект наблюдается в 7 из 10, т. е. в 70% случаев, а в группе неагрессивных юношей – в 2 из 11, т. е. в 18,2% случаев. Эти процентные доли можно сопоставить по методу φ* , чтобы установить достоверность различий между ними.
Таблица 5.2
Показатели расстояния (в см), выбираемого агрессивными и неагрессивными юношами в разговоре с сокурсником (по данным Г.А. Тлегеновой, 1990)
Группа 1: юноши с высокими показателями по шкале Агрессивности FPI-R[22] (n1 =10) | Группа 2: юноши с низкими значениями по шкале Агрессивности FPI-R (n2 =11) | |||
d(cм) | % доля | d(cM) | % доля | |
“Есть эффект” d≤50 см | ||||
70% | 18,2% | |||
“Нет эффекта” d>50 см | ||||
80 QO | 30% | . 81,8% | ||
Суммы | 100% | 100% | ||
Средние | 5б:о | 77.3 |
Сформулируем гипотезы.
H0: Доля лиц, которые выбирают дистанцию d≤50 см, в группе агрессивных юношей не больше, чем в группе неагрессивных юношей.
H1: Доля лиц, которые выбирают дистанцию d≤50 см, в группе агрессивных юношей больше, чем в группе неагрессивных юношей. Теперь построим так называемую четырехклеточную таблицу.
Таблица 53
Четырехклеточная таблица для расчета критерия φ* при сопоставлении групп агрессивных (nf=10) и неагрессивных юношей (п2=11)
Группы | “Есть эффект”: d≤50 | “Нет эффекта”. d>50 | Суммы | ||||
Количество испытуемых | (% доля) | Количество испытуемых | (% доля) | ||||
1 группа -агрессивные юноши | (70%) | А | (30%) | Б | |||
2 группа -неагрессивные юноши | (180%) | В | (81,8%) | Г | и | ||
Сумма |
По Табл. XII Приложения 1 определяем величины φ, соответствующие процентным долям “эффекта” в каждой из групп.
Полученное эмпирическое значение φ* находится в зоне значимости.
Ответ: H0 отвергается. Принимается H1. Доля лиц, которые выбирают дистанцию в беседе меньшую или равную 50 см, в .группе агрессивных юношей больше, чем в группе неагрессивных юношей
На основании полученного результата мы можем сделать заключение, что более агрессивные юноши чаще выбирают расстояние менее полуметра, в то время как неагрессивные юноши чаще выбирают большее, чем полметра, расстояние. Мы видим, что агрессивные юноши общаются фактически на границе интимной (0—46 см) и личной зоны (от 46 см). Мы помним, однако, что интимное расстояние между партнерами является прерогативой не только близких добрых отношений, но и рукопашного боя (Hall E.T., 1959).
Пример 3 – сопоставление выборок и по уровню, и по распределению признака.
В данном варианте использования критерия мы вначале можем проверить, различаются ли группы по уровню какого-либо признака, а затем сравнить распределения признака в двух выборках. Такая задача может быть актуальной при анализе различий в диапазонах или форме распределения оценок, получаемых испытуемыми по какой-либо новой методике.
В исследовании Р. Т. Чиркиной (1995) впервые использовался опросник, направленный на выявление тенденции к вытеснению из памяти фактов, имен, намерений и способов действия, обусловленному личными, семейными и профессиональными комплексами. Опросник был создан при участии Е. В. Сидоренко на основании материалов книги 3. Фрейда “Психопатология обыденной жизни”. Выборка из 50 студентов Педагогического института, не состоящих в браке, не имеющих детей, в возрасте от 17 до 20 лет, была обследована с помощью данного опросника, а также методики Менестера-Корзини для выявления интенсивности ощущения собственной недостаточности, или “комплекса неполноценности” (Manaster G. J., Corsini R. J., 1982).
Результаты обследования представлены в Табл. 5.4.
Можно ли утверждать, что между показателем энергии вытеснения, диагностируемым с помощью опросника, и показателями интенсивности, ощущения собственной недостаточности существуют какие-либо значимые соотношения?
Таблица 5.4
Показатели интенсивности ощущения собственной недостаточности в группах студентов с высокой (nj=18) и низкой (п2=24) энергией вытеснения
Группа 1: энергия вытеснения от 19 до 31 балла (n1=181 | Группа 2: энергия вытеснения от 7 до 13 баллов (n2=24) | |
0; 0; 0; 0; 0 20; 20 30; 30; 30; 30; 30; 30; 30 50; 50 60; 60 | 0; 0 5; 5; 5; 5 10; 10; 10; 10; 10; 10 15; 15 20; 20; 20; 20 30; 30; 30; 30; 30; 30 | |
Суммы Средние | 26,11 | 15,42 |
Несмотря на то, что средняя величина в группе с более энергичным вытеснением выше, в ней наблюдаются также и 5 нулевых значений. Если сравнить гистограммы распределения оценок в двух выборках, то между ними обнаруживается разительный контраст (Рис. 5.3).
Для сравнения двух распределений мы могли бы применить критерий χ2 или критерий λ, но для этого нам пришлось бы укрупнять разряды, а кроме того, в обеих выборках n<30.
Критерий φ* позволит нам проверить наблюдаемый на графике эффект несовпадения двух распределений, если мы условимся считать, что “эффект есть”, если показатель чувства недостаточности принимает либо очень низкие (0), либо, наоборот, очень высокие значения (S30), и что “эффекта нет”, если показатель чувства недостаточности принимает средние значения, от 5 до 25.
Сформулируем гипотезы.
H0: Крайние значения показателя недостаточности (либо 0, либо 30 и более) в группе с более энергичным вытеснением встречаются не чаще, чем в группе с менее энергичным вытеснением.
H1:Крайние значения показателя недостаточности (либо 0, либо 30 и более) в группе с более энергичным вытеснением встречаются чаще, чем в группе с менее энергичным вытеснением.
Создадим четырехклеточную таблицу, удобную для дальнейшего расчета критерия φ*.
Таблица 5.5
Четырехклеточная таблица для расчета критерия φ*при сопоставлении групп с большей и меньшей энергией вытеснения по соотношению показателей недостаточности
Группы | “Есть эффект”: показатель недостаточности равен 0 или >30 | “Нет эффекта”: показатель недостаточности от 5 до 25 | Суммы | ||
1 группа – с большей энергией вытеснения | (88,9%) | (11,1%) | |||
2 группа – с меньшей энергией вытеснения | (33,3%) | (66,7%) | |||
Суммы | 42[23] |
По Табл. XII Приложения 1 определим величины ф, соответствующие сопоставляемым процентным долям:
Подсчитаем эмпирическое значение φ*:
Критические значения φ* при любых n1, n2, как мы помним из предыдущего примера, составляют:
Табл. XIII Приложения 1 позволяет нам и более точно определить уровень значимости полученного результата: р<0,001.
Ответ: H0 отвергается. Принимается H1. Крайние значения показателя недостаточности (либо 0, либо 30 и более) в группе с большей энергией вытеснения встречаются чаще, чем в группе с меньшей энергией вытеснения.
Итак, испытуемые с большей- энергией вытеснения могут иметь как очень высокие (30 и более), так и очень низкие (нулевые) показатели ощущения собственной недостаточности. Можно предположить, что они вытесняют и свою неудовлетворенность, и потребность в жизненном успехе. Эти предположения нуждаются в дальнейшей проверке.
Полученный результат, независимо от его интерпретации, подтверждает возможности критерия φ* в оценке различий в форме распределения признака в двух выборках.
В мощных возможностях критерия φ* можно убедиться, подтвердив совершенно иную гипотезу при анализе материалов данного примера. Мы можем доказать, например, что в группе с большей энергией вытеснения показатель недостаточности все же выше, несмотря на парадоксальность его распределения в этой группе.
Сформулируем новые гипотезы.
H0Наиболее высокие значения показателя недостаточности (30 и более) в группе с большей энергией вытеснения встречаются не чаще, чем в группе с меньшей энергией вытеснения.
H1: Наиболее высокие значения показателя недостаточности (30 и более) в группе с большей энергией вытеснения встречаются чаще, чем в группе с меньшей энергией вытеснения. Построим четырехпольную таблицу, используя данные Табл. 5.4.
Таблица 5.6
Четырехклеточная таблица для расчета критерия φ* при сопоставлении групп с большей и меньшей энергией вытеснения по уровню показателя недостаточности
Группы | “Есть эффект”* показатель недостаточности больше или равен 30 | “Нет эффекта”: показатель недостаточности меньше 30 | Суммы | ||
1 группа – с большей энергией вытеснения | (61,1%) | (38.9%) | |||
2 группа – с меньшей энергией вытеснения | (25.0%) | (75.0%) | |||
Суммы |
По Табл. XIII Приложения 1 определяем, что этот результат соответствует уровню значимости р=0,008.
Ответ: Но отвергается. Принимается Hj: Наиболее высокие показатели недостаточности (30 и более баллов) в группе с большей энергией вытеснения встречаются чаще, чем в группе с меньшей энергией вытеснения (р=0,008).
Итак, нам удалось доказать и то, что в группе с более энергичным вытеснением преобладают крайние значения показателя недостаточности, и то, что больших своих значений этот показатель достигает именно в этой группе.
Теперь мы могли бы попробовать доказать, что в группе с большей энергией вытеснения чаще встречаются и более низкие значения показателя недостаточности, несмотря на то, что средняя величина вэтой группе больше (26,11 против 15,42 в группе сменьшим вытеснением).
Сформулируем гипотезы.
H0: Самые низкие показатели недостаточности (нулевые) в группе сбольшей энергией вытеснения встречаются не чаще, чем в группе сменьшей энергией вытеснения.
H1: Самые низкие показатели недостаточности (нулевые) встречаются вгруппе с большей энергией вытеснения чаще, чем в группе сменее энергичным вытеснением. Сгруппируем данные в новую четырехклеточную таблицу.
Таблица 5.7
Четырехклеточная таблица для сопоставления групп с разной энергией вытеснения по частоте нулевых значений показателя недостаточности
Группы | “Есть эффект”: показатель недостаточности равен 0 | “Нет эффекта” недостаточности | показатель не равен 0 | Суммы | |
1 группа – с большей энергией вытеснения | (27,8%) | (72,2%) | |||
1 группа – с меньшей энергией вытеснения | (8,3%) | (91,7%) | |||
Суммы |
Определяем величины φ и подсчитываем значение φ*:
Ответ: H0 отвергается. Самые низкие показатели недостаточности (нулевые) в группе с большей энергией вытеснения встречаются чаще, чем в группе с меньшей энергией вытеснения (р<0,05).
В сумме полученные результаты могут рассматриваться как свидетельство частичного совпадения понятий комплекса у З.Фрейда и А.Адлера.
Существенно при этом, что между показателем энергии вытеснения и показателем интенсивности ощущения собственной недостаточности в целом по выборке получена положительная линейная корреляционная связь (р= 0,491, р<0,01). Как мы можем убедиться, применение критерия φ* позволяет проникнуть в более тонкие и содержательно значимые соотношения между этими двумя показателями.
Пример 4 – использование критерия φ* в сочетании с критерием λ Колмогорова-Смирнова в целях достижения максимальноточного результата
Если выборки сопоставляются по каким-либо количественно измеренным показателям, встает проблема выявления той точки распределения, которая может использоваться как критическая при разделении всех испытуемых на тех, у кого “есть эффект” и тех, у кого “нет эффекта”.
В принципе точку, по которой мы разделили бы группу на подгруппы, где есть эффект и нет эффекта, можно выбрать достаточно произвольно. Нас может интересовать любой эффект и, следовательно, мы можем разделить обе выборки на две части в любой точке, лишь бы это имело какой-то смысл.
Для того, чтобы максимально повысить мощность критерия φ*, нужно, однако, выбрать точку, в которой различия между двумя сопоставляемыми группами являются наибольшими. Точнее всего мы сможем сделать это с помощью алгоритма расчета критерия λ , позволяющего обнаружить точку максимального расхождения между двумя выборками.
Возможность сочетания критериев φ* и λ описана Е.В. Гублером (1978, с. 85-88). Попробуем использовать этот способ в решении следующей задачи.
В совместном исследовании М.А. Курочкина, Е.В. Сидоренко и Ю.А. Чуракова (1992) в Великобритании проводился опрос английских общепрактикующих врачей двух категорий: а) врачи, поддержавшие медицинскую реформу и уже превратившие свои приемные в фондодержащие организации с собственным бюджетом; б) врачи, чьи приемные по-прежнему не имеют собственных фондов и целиком обеспечиваются государственным бюджетом. Опросники были разосланы выборке из 200 врачей, репрезентативной по отношению к генеральной совокупности английских врачей по представленности лиц разного пола, возраста, стажа и места работы – в крупных городах или в провинции.
Ответы на опросник прислали 78 врачей, из них 50 работающих в приемных с фондами и 28 – из приемных без фондов. Каждый из врачей должен был прогнозировать, какова будет доля приемных с фондами в следующем, 1993 году. На данный вопрос ответили только 70 врачей из 78, приславших ответы. Распределение их прогнозов представлено в Табл. 5.8 отдельно для группы врачей с фондами и группы врачей без фондов.
Различаются ли каким-то образом прогнозы врачей с фондами и врачей без фондов?
Таблица 5.8
Распределение прогнозов сбщепрактикующих врачей о том, какова будет доля приемных с фондами в 1993 году
Прогнозируемая доля | Эмпирические частоты выбора данной категории прогноза | ||
приемных с фондами | врачами с фондом (n1=45) | врачами без фонда (n2 =25) | Суммы |
1. от 0 до 20% | |||
2. от 21 до 40% | И | ||
3. от 41 до 60% | |||
4. от 61 до 80% | И | ||
5. от 81 до 100% | |||
Суммы |
Определим точку максимального расхождения между двумя распределениями ответов по Алгоритму 15 из п. 4.3 (см. Табл. 5.9).
Таблица 5.9
Расчет максимальной разности накопленных частостей в распределениях прогнозов врачей двух групп
Прогнозируемая доля приемных с фондами (%) | Эмпирические частоты выбора данной категории ответа | Эмпирические частости | Накопленные эмпирические частости | Разность (d) | |||
врачами с фондом (n1=45) | врачами без фонда (n2=25) | f*э1 | f*a2 | ∑f*э1 | ∑f*а1 | ||
1. от 0 до 20% 2. от 21 до 40% 3. от 41 до 60% 4. от 61 до 80% 5. от 81 до 100% | 0,089 0,333 0,400 0,156 0,022 | 0,200 0,440 0,200 0,160 0 | 0,089 0,422 0,822 0,978 1,000 | 0,200 0,640 0,840 1,000 1,000 | 0,218 0,018 0,022 |
Максимальная выявленная между двумя накопленными эмпирическими частостями разность составляет 0,218.
Эта разность оказывается накопленной во второй категории прогноза. Попробуем использовать верхнюю границу данной категории в качестве критерия для разделения обеих выборок на подгруппу, где “есть эффект” и подгруппу, где “нет эффекта”. Будем считать, что “эффект есть”, если данный врач прогнозирует от 41 до 100% приемных с фондами в 1993 году, и что “эффекта нет”, если данный врач прогнозирует от 0 до 40% приемных с фондами в 1993 году. Мы объединяем категории прогноза 1 и 2, с одной стороны, и категории прогноза 3, 4 и 5, с другой. Полученное распределение прогнозов представлено в Табл. 5.10.
Таблица 5.10
Распределение прогнозов у врачей с фондами и врачей без фондов
Прогнозируемая доля приемных с фондами(%1 | Эмпирические частоты выбора данной категории прогноза | Суммы | |
врачами с фондом (n1=45) | врачами без фонда (n2=25) | ||
1. от 0 до 40% | |||
2. от 41 до 100% | |||
Суммы |
Полученную таблицу (Табл. 5.10) мы можем использовать, проверяя разные гипотезы путем сопоставления любых двух ее ячеек. Мы помним, что это так называемая четырехклеточная, или четырехпольная, таблица.
В данном случае нас интересует, действительно ли врачи, уже располагающие фондами, прогнозируют больший размах этого движения в будущем, чем врачи, не располагающие фондами. Поэтому мы условно считаем, что “эффект есть”, когда прогноз попадает в категорию от 41 до 100%. Для упрощения расчетов нам необходимо теперь повернуть таблицу на 90°, вращая ее по направлению часовой стрелки. Можно сделать это даже буквально, повернув книгу вместе с таблицей. Теперь мы можем перейти к рабочей таблице для расчета критерия φ* – углового преобразования Фишера.
Таблица 5.11
Четырехклеточная таблица для подсчета критерия φ* Фишера для выявления различий в прогнозах двух групп общепрактикующих врачей
Группа | Есть эффект -прогноз от 41 до 100% | Нет эффекта -прогноз от 0 до 40% | Всего |
I группа – врачи, взявшие фонд | 26 (57.8%) | 19 (42.2%) | |
II группа – врачи, не взявшие фонда | 9 (36.0%) | 16 (64.0%) | |
Всего |
Сформулируем гипотезы.
H0: Доля лиц, прогнозирующих распространение фондов на 41%-100% всех врачебных приемных, в группе врачей с фондами не больше, чем в группе врачей без фондов.
H1: Доля лиц, прогнозирующих распространение фондов на 41%-100% всех приемных, в группе врачей с фондами больше, чем в группе врачей без фондов.
Определяем величины φ1 и φ2 по Таблице XII приложения 1. Напомним, что φ1 – это всегда угол, соответствующий большей процентной доле.
Теперь определим эмпирическое значение критерия φ*:
По Табл. XIII Приложения 1 определяем, какому уровню значимости соответствует эта величина: р=0,039.
По той же таблице Приложения 1 можно определить критические значения критерия φ*:
Ответ: Но отвергается (р=0,039). Доля лиц, прогнозирующих распространение фондов на 41-100% всех приемных, в группе врачей, взявших фонд, превышает эту долю в группе врачей, не взявших фонда.
Иными словами, врачи, уже работающие в своих приемных на отдельном бюджете, прогнозируют более широкое распространение этой практики в текущем году, чем врачи, пока еще не согласившиеся перейти на самостоятельный бюджет. Интерпретации этого результата многозначны. Например, можно предположить, что врачи каждой из групп подсознательно считают свое поведение более типичным. Это может означать также, что врачи, уже перешедшие на самостоятельный бюджет, склонны преувеличивать размах этого движения, так как им нужно оправдать свое решение. Выявленные различия могут означать и нечто такое, что вовсе выходит за рамки поставленных в исследовании вопросов. Например, что активность врачей, работающих на самостоятельном бюджете, способствует заострению различий в позициях обеих групп. Они проявили большую активность, когда согласились взять фонды, они проявили большую активность, когда взяли на себя труд ответить на почтовый опросник; они проявляют большую активность, когда прогнозируют большую активность других врачей в получении фондов.
Так или иначе, мы можем быть уверены, что выявленный уровень статистических различий – максимально возможный для этих реальных данных. Мы установили с помощью критерия λ точку максимального расхождения между двумя распределениями и именно в этой точке разделили выборки на две части.
АЛГОРИТМ 17
Расчет критерия φ*
1. Определить те значения признака, которые будут критерием для разделения испытуемых на тех, у кого “есть эффект” и тех, у кого “нет эффекта”. Если признак измерен количественно, использовать критерий λ для поиска оптимальной точки разделения.
2. Начертить четырехклеточную таблицу из двух столбцов и двух строк. Первый столбец – “есть эффект”; второй столбец – “нет эффекта”; первая строка сверху – 1 группа (выборка); вторая строка – 2 группа (выборка).
3. Подсчитать количество испытуемых в первой группе, у которых “есть эффект”, и занести это число в левую верхнюю ячейку таблицы.
4. Подсчитать количество испытуемых в первой выборке, у которых “нет эффекта”, и занести это число в правую верхнюю ячейку таблицы. Подсчитать сумму по двум верхним ячейкам. Она должна совпадать с количеством испытуемых в первой группе.
5. Подсчитать количество испытуемых во второй группе, у которых “есть эффект”, и занести это число в левую нижнюю ячейку таблицы.
6. Подсчитать количество испытуемых во второй выборке, у которых “нет эффекта”, и занести это число в правую нижнюю ячейку таблицы. Подсчитать сумму по двум нижним ячейкам. Она должна совпадать с количеством испытуемых во второй группе (выборке).
7. Определить процентные доли испытуемых, у которых “есть эффект”, путем отнесения их количества к общему количеству испытуемых в данной группе (выборке). Записать полученные процентные доли соответственно в левой верхней и левой нижней ячейках таблицы в скобках, чтобы не перепутать их с абсолютными значениями.
8. Проверить, не равняется ли одна из сопоставляемых процентных долей нулю. Если это так, попробовать изменить это, сдвинув точку разделения групп в ту или иную сторону. Если это невозможно или нежелательно, отказаться от критерия φ* и использовать критерий χ2.
9. Определить по Табл. XII Приложения 1 величины углов φ для каждой из сопоставляемых процентных долей.
10. Подсчитать эмпирическое значение φ* по формуле:
где: φ1 – угол, соответствующий большей процентной доле;
φ2 – угол, соответствующий меньшей процентной доле;
n1 – количество наблюдений в выборке 1;
n2 – количество наблюдений в выборке 2.
11. Сопоставить полученное значение φ* с критическими значениями: φ* ≤1,64 (р<0,05) и φ* ≤2,31 (р<0,01).
Если φ*эмп ≤φ*кр. H0 отвергается.
При необходимости определить точный уровень значимости полученного φ*эмп по Табл. XIII Приложения 1.
§
1. В выборке должно быть не менее 5 наблюдений. В принципе возможно применение критерия и при 2≤n<5, но лишь в отношении определенного типа задач (см. Табл. XV Приложения 1).
2. Верхний предел численности выборки зависит от ограничений, определяемых пп.3-8 и варьирует в диапазоне от 50 до 300 наблюдений, что определяется имеющимися таблицами критических значений.
3. Биномиальный критерий m позволяет проверить лишь гипотезу о том, что частота встречаемости интересующего нас эффекта в обследованной выборке превышает заданную вероятность Р. Заданная вероятность при этом должна быть: Р ≤0,50.
4. Если мы хотим проверить гипотезу о том, что частота встречаемости интересующего нас эффекта достоверно ниже заданной вероятности, то при Р=0,50 мы можем сделать это с помощью уже известного критерия знаков G, при Р>0,50 мы должны преобразовать гипотезы в противоположные, а при Р<0,50 придется использовать критерий χ2.
По Табл. 5.12 легко определить, какой из путей для нас доступен.
Таблица 5.12
Выбор критерия для сопоставлений эмпирической частоты с теоретической при разных вероятностях исследуемого эффекта Р и разных гипотезах.
Заданные вероятности | H1: fэмпдостоверно выше fтеор | H1: fэмп достоверно ниже fтеор | ||||
Р<0,50 | А | m | для 2 ≤n ≤50 | Б | χ2 | для n ≥30 |
Р=0,50 | В | m | для 5 ≤n ≤300 | Г | G | для 5 ≤n ≤300 |
Р>0,50 | Д | χ2 | для n ≤30 | Е | m | для 2 ≤n ≤50 |
Пояснения к Табл. 5.12
A) Если заданная вероятность Р<0,50, а fэмп>fтеор (например, допустимый уровень брака – 15%, а в обследованной выборке получено значение в 25%), то биномиальный критерий применим для объема выборки 2≤n≤50.
Б) Если заданная вероятность Р<0,50, а fэмп>fтеор (например, допустимый уровень брака – 15%, а в обследованной выборке наблюдается 5% брака), то биномиальный критерий неприменим и следует применять критерий χ2(см. Пример 2).
B) Если заданная вероятность Р=0,50, а fэмп>fтеор (например, вероятность выбора каждой из равновероятных альтернатив Р=0,50, а в обследованной выборке одна из альтернатив выбирается чаще, чем вполовине случаев), то биномиальный критерий применим для объема выборки 5≤n≤300.
Г) Если заданная вероятность Р=0,50, a fэмп>fтеор (например, вероятность выбора каждой из равновероятных альтернатив Р=0,50, а в обследованной выборке одна из альтернатив наблюдается реже, чем в половине случаев), то вместо биномиального критерия применяется критерий знаков G, являющийся “зеркальным отражением” биномиального критерия при Р=0,50. Допустимый объем выборки: 5≤n≤300.
Д) Если заданная вероятность Р>0,50, а fэмп>fтеор (например, среднестатистический процент решения задачи – 80%, а в обследованной выборке он составляет 95%), то биномиальный критерий неприменим и следует применять критерий χ2(см. Пример 3).
Е) Если заданная вероятность Р>0,50, а fэмп>fтеор (например, среднестатистический процент решения задачи – 80%, а в обследованной выборке он составляет 60%), то биномиальный критерий применим при условии, что в качестве “эффекта” мы будем рассматривать более редкое событие – неудачу в решении задачи, вероятность которого Q=l—Р=1—0,80=0,20 и процент встречаемости в данной выборке: 100%—75%=25%. Эти преобразования фактически сведут данную задачу к задаче, предусмотренной n. А. Допустимый объем выборки: 2≤n≤50 (см. пример 3).
Пример 1
В процессе тренинга сенситивности в группе из 14 человек выполнялось упражнение “Психологический прогноз”. Все участники должны были пристально вглядеться в одного и того же человека, который сам пожелал быть испытуемым в этом упражнении. Затем каждый из участников задавал испытуемому вопрос, предполагавший два заданных варианта ответа, например: “Что в тебе преобладает: отстраненная наблюдательность или включенная эмпатия?” “Продолжал бы ты работать или нет, если бы у тебя появилась материальная возможность не работать?” “Кто тебя больше утомляет – люди нахальные или занудные?” и т. п. Испытуемый должен был лишь молча выслушать вопрос, ничего не отвечая. Во время этой паузы участники пытались определить, как он ответит на данный вопрос, и записывали свои прогнозы. Затем ведущий предлагал испытуемому дать ответ на заданный вопрос. Теперь каждый участник мог определить, совпал ли его прогноз с ответом испытуемого или нет. После того, как было задано 14 вопросов (13 участников ведущий), каждый сообщил, сколько у него получилось точных прогнозов. В среднем было по 7-8 совпадений, но у одного из участников их было 12, и группа ему спонтанно зааплодировала. У другого участника, однако, оказалось всего 4 совпадения, и он был очень этим огорчен.
Имела ли группа статистические основания для аплодисментов?
Имел ли огорченный участник статистические основания для грусти?
Начнем с первого вопроса.
По-видимому, группа будет иметь статистические основания для аплодисментов, если частота правильных прогнозов у участника А превысит теоретическую частоту случайных угадываний. Если бы участник прогнозировал ответ испытуемого случайным образом, то, в соответствии с теорией вероятностей, шансы случайно угадать или не угадать ответ на данный вопрос у него были бы равны P=Q=0,5. Определим теоретическую частоту правильных случайных угадываний:
fтеор=n·P
где n – количество прогнозов;
Р – вероятность правильного прогноза при случайном угадывании.
fтеор=14-0,5=7
Итак, нам нужно определить, “перевешивают” ли 12 реально данных правильных прогнозов 7 правильных прогнозов, которые могли бы быть у данного участника, если бы он прогнозировал ответ испытуемого случайным образом.
Требования, предусмотренные ограничением 3, соблюдены: Р=0,50; fэмп>fтеор. Данный случай относится к варианту “В” Табл. 5.12.
Мы можем сформулировать гипотезы.
H0: Количество точных прогнозов у участника А не превышает частоты, соответствующей вероятности случайного угадывания.
H1: Количество точных прогнозов у участника А превышает частоту, соответствующую вероятности случайного угадывания.
По Табл. XIV Приложения 1 определяем критические значения критерия m при n=14, Р=0,50:
Мы помним, что за эмпирическое значение критерия m принимается эмпирическая частота:
Зона значимости простирается вправо, в область более высоких значений m (более “весомых”, если использовать аналогию с весами), а зона незначимости – в область более низких, “невесомых”, значений m.
Ответ: H0 отвергается. Принимается H1. Количество точных прогнозов у участника А превышает (или по крайней мере равняется) критической частоте вероятности случайного угадывания (р≤0,01). Группа вполне обоснованно ему аплодировала!
Теперь попробуем ответить на второй вопрос задачи.
По-видимому, основания для грусти могут появиться, если количество правильных прогнозов оказывается достоверно ниже теоретической частоты случайных угадываний. Мы должны определить, 4 точных прогноза участника Б – это достоверно меньше, чем 7 теоретически возможных правильных прогнозов при случайном угадывании или нет?
В данном случае Р=0,50; fэмп>fтеор. В соответствии с ограничением 4, в данном случае мы должны применить критерий знаков, который по существу является зеркальным отражением или “второй стороной” одностороннего биномиального критерия (вариант “Г” Табл. 5.12). Вначале нам нужно определить, что является типичным событием для участника Б. Это неправильные прогнозы, их 10. Теперь мы определяем, достаточно ли мало у него нетипичных правильных прогнозов, чтобы считать перевешивание неправильных прогнозов достоверным.
Сформулируем гипотезы.
H0: Преобладание неправильных прогнозов у участника Б является случайным.
H1: Преобладание неправильных прогнозов у участника Б не является случайным.
По Табл. V Приложения 1 определяем критические значения критерия знаков G для n=14:
Построим “ось значимости”. Мы помним, что в критерии знаков зона значимости находится слева, а зона незначимости – справа, так как чем меньше нетипичных событий, тем типичные события являются более достоверно преобладающими.
Эмпирическое значение критерия G определяется как количество нетипичных событий. В данном случае:
Эмпирическое значение критерия G попадает в зону незначимости.
Ответ: H0 принимается. Преобладание неправильных прогнозов у участника Б является случайным.
Участник Б не имел достаточных статистических оснований для огорчения. Дело, однако, в том, что психологическая “весомость” отклонения его оценки значительно перевешивает статистическую. Всякий практикующий психолог согласится, что повод для огорчения у участника Б все же был.
Важная особенность биномиального критерия и критерия знаков состоит в том, что они превращают уникальность, единственность и жизненную резкость произошедшего события в нечто неотличимое от безликой и всепоглощающей случайности. Учитывая это, лучше использовать биномиальный критерий для решения более отвлеченных, формализованных задач, например, для уравновешивания выборок по признаку пола, возраста, профессиональной принадлежности и т. п.
При оценке же личностно значимых событий оказывается, что статистическая сторона дела не совпадает с психологической больше, чем при использовании любого из других критериев.
Пример 2
В тренинге профессиональных наблюдателей допускается, чтобы наблюдатель ошибался в оценке возраста ребенка не более чем на 1 год в ту или иную сторону. Наблюдатель допускается к работе, если он совершает не более 15% ошибок, превышающих отклонение на 1 год. Наблюдатель Н допустил 1 ошибку в 50-ти попытках, а наблюдатель К – 15 ошибок в 50-ти попытках. Достоверно ли отличаются эти результаты от контрольной величины?
Определим частоту допустимых ошибок при п = 50:
fтеор=n·Р=50·0,15=7,5
Для наблюдателя Н fэмп<fтеор. Для наблюдателя К fэмп>fтеор
Сформулируем гипотезы для наблюдателя Н.
H0: Количество ошибок у наблюдателя Н не меньше, чем это предусмотрено заданной величиной.
H1: Количество ошибок у наблюдателя Н меньше, чем это предусмотрено заданной величиной.
В данном случае Р=0,15<0,50; fэмп>fтеор.
Этот случай попадает под вариант Б Табл. 5. 12. Нам придется применить критерий у}, сопоставляя полученные эмпирические частоты ошибочных и правильных ответов с теоретическими частотами, составляющими, соответственно, 7,5 для ошибочного ответа и (50-7,5)=42,5 для правильного ответа. Подсчитаем χ2по формуле, включающей поправку на непрерывность[24]:
По Табл. IX Приложения 1 определяем критические значения χ2при v=l:
Ответ: H0 отвергается. Количество ошибок у наблюдателя Н меньше, чем это предусмотрено заданной величиной (р≤0,05)
Сформулируем гипотезы для наблюдателя К.
H0: Количество ошибок у наблюдателя К не больше, чем это предусмотрено заданной величиной.
H1: Количество ошибок у наблюдателя К больше, чем это предусмотрено заданной величиной.
В данном случае Р=0,15<0,5; fэмп>fтеор.Этот случай подпадает под вариант А Табл. 5.12. Мы можем применить биномиальный критерий, поскольку n=50.
По Табл. XV Приложения 1 определяем критические значения при п=50, Р=0,15, Q=0,85:
Ответ: H0 отвергается. Количество ошибок у наблюдателя Н меньше, чем это предусмотрено заданной величиной (р<0,05).
Пример 3
Впримере 1 параграфа 5.2 мы сравнивали процент справившихся с экспериментальной задачей испытуемых в двух группах. Теперь мы можем сопоставить процент успешности каждой группы со среднестатистическим процентом успешности. Данные представлены в Табл. 5.13.
Таблица 5.13
Показатели успешности решения задачи в двух группах испытуемых
Количество испытуемых, решивших задачу | Количество испытуемых, не решивших задачу | Суммы | |||
1 группа (n1=20) | (60%) | (40%) | |||
2 группа (п7=25) | (40%) | (60%) | |||
Суммы |
Среднестатистический показатель успешности в решении этой задачи – 55%. Определим теоретическую частоту правильных ответов для групп 1 и 2:
Для группы 1, следовательно, Р=0,55>0,50; fэмп=12>fтеор. Этот случай соответствует варианту “Д” Табл. 5.12. Мы должны были бы применить критерий χ2, но у нас всего 20 наблюдений: n<30. Ни биномиальный критерий, ни критерий χ2неприменимы. Остается критерий φ* Фишера, который мы сможем применить, если узнаем, сколько испытуемых было в выборке, по которой определялся среднестатистический процент.
Далее, для группы 2: Р=0,55>0,50; fэмп=10>fтеор. Этот случай соответствует варианту “Е” Табл. 5.12. Мы можем применить биномиальный критерий, если будем считать “эффектом” неудачу в решении задачи. Вероятность неудачи Q=l—Р=1—0,55=0,45. Новая эмпирическая частота составит: fэмп=25-10=15.
Сформулируем гипотезы.
H0: Процент неудач в обследованной выборке не превышает заданного процента неудач.
H1 Процент неудач в обследованной выборке превышает заданный процент неудач.
По Табл. XV Приложения 1 определяем критические значения для n=25, P=0,45, Q=0.55 (мы помним, что Р и Q поменялись местами):
Ответ: H0 принимается. Процент неудач в обследованной выборке не превышает заданного процента неудач.
Сформулируем общий алгоритм применения критерия m.
АЛГОРИТМ 18
§
Часто бывает так, что критерий Q неприменим вследствие совпадения диапазонов двух выборок, а критерий U неприменим вследствие того, что количество наблюдений n>60.
В качестве примера сошлемся на задачу сравнения сдвигов оценок в экспериментальной и контрольной группах после просмотра видеозаписи и чтения текста о пользе телесных наказаний (см. параграф 3.2). Сдвиги в двух группах являются показателями, полученными независимо в двух группах испытуемых. Задача сравнения таких показателей сдвига – это частный случай задачи сопоставления двух групп по уровню значений какого-либо признака. Такие задачи решаются с помощью критериев Q Розенбаума и U Манна-Уитни (см. Табл. 3.1). Сводные данные по сдвигам в двух группах представлены в Табл. 5.14.
Таблица 5.14
Эмпирические частоты сдвигов разной интенсивности и направления в экспериментальной и контрольной группах после предъявления видеозаписи или письменного текста
Значения сдвига | Количество сдвигов в экспериментальной группе (n1=16) | Количество сдвигов в контрольной группе (n2=23) | Суммы |
5 2 1 | |||
-1 -2 | |||
Суммы |
В экспериментальной группе значения сдвигов варьируют от —2 до 2, а в контрольной группе от —2 до 5. Критерий Q неприменим. Критерий U неприменим, поскольку количество наблюдений (сдвигов) в каждой группе больше 60.
Применяем критерий φ*. Построим вначале четырехклеточную таблицу для положительных сдвигов, а затем – для нулевых.
Таблица 5.15
Четырехклеточная таблица для подсчета критерия φ* при сопоставлении долей положительных сдвигов в экспериментальной и контрольной группах
Группы | Есть эффект : сдвиг положительный | “Нет эффекта”.’ сдвиг отрицательный или нулевок | Суммы |
Группа 1 экспериментальная | 22 (34,4%) | 42 (656%) | |
Группа 2 контрольная | 17 (18,5%) | 75 (81,5%) | |
Суммы |
Сформулируем гипотезы.
H0: Доля положительных сдвигов в экспериментальной группе не больше, чем в контрольной.
H1: Доля положительных сдвигов в экспериментальной группе больше, чем в контрольной.
Далее действуем по Алгоритму 17.
Мы можем и точно определить уровень статистической значимости полученного результата по Табл. XIII Приложения 1:
при φ*эмп=2,242 р=0,013.
Ответ: H0 отклоняется. Принимается H1. Доля положительных сдвигов в экспериментальной группе больше, чем в контрольной (р<0,013).
Теперь перейдем к вопросу о меньшей доле нулевых сдвигов в экспериментальной группе.
Таблица 5.16
Четырехклеточная таблица для подсчета критерия φ* при сопоставлении долей нулевых сдвигов в экспериментальной и контрольной группах
Группы | “Есть эффект”: сдвиг равен 0 | “Нет сдвиг а”: эффект не равен 0 | Суммы | ||
Группа 1 экспериментальная | (59,4%) | (40,6%) | |||
Группа 2 контрольная | (70,7%) | (29,3%) | |||
Суммы |
Сформулируем гипотезы.
H0: Доля нулевых сдвигов в контрольной группе не больше, чем в экспериментальной.
H1: Доля нулевых сдвигов в контрольной группе больше, чем в экспериментальной. Далее действуем по Алгоритму 17.
Ответ: H0 принимается. Доля нулевых сдвигов в контрольной группе не больше, чем в экспериментальной.
Итак, доля положительных сдвигов в экспериментальной группе больше, но доля нулевых сдвигов – примерно такая же, как и в контрольной группе. Отметим, что в критерии знаков G все нулевые сдвиги были исключены из рассмотрения, поэтому полученный результат дает дополнительную информацию, которую не мог дать критерий знаков.
Случай 2. Другие критерии неэффективны или слишком громоздки
Вкачестве примера можно указать на задачу с сопоставлением показателей недостаточности в группах с большей и меньшей энергией вытеснения (см. Табл. 5.4).
Критерий Q дает незначимый результат:
Критерий U в данном случае применим и даже дает значимый результат (Uэмп=154,5; р<0,05), однако ранжирование показателей, многие из которых имеют одно и то же значение (например, значение 30 баллов встречается 13 раз), представляет определенные трудности.
Как мы помним, с помощью критерия φ* удалось доказать, что наиболее высокие показатели недостаточности (30 и более баллов) встречаются в группе с большей энергией вытеснения чаще, чем в группе с меньшей энергией вытеснения (р=0,008) и что, с другой стороны, самые низкие (нулевые) показатели встречаются чаще также в этой группе (р ≤0,05).
Другим примером может служить задача сопоставления распределения выборов желтого цвета в отечественной выборке и в выборке Х.Клара (см. параграф 4.3).
Критерий λ не выявил достоверных различий между двумя распределениями, однако позволил нам установить точку максимального накопленного расхождения между ними. Из Табл. 4.19 следует, что такой точкой является вторая позиция желтого цвета. Построим четы-рехклеточную таблицу, где “эффектом” будет считаться попадание желтого цвета на одну из первых двух позиций.
Таблица 5.17
Четырехклеточная таблица для расчета φ* при сопоставлении отечественной выборки (n1=102) и выборки Х.Клара (n2=800) по положению желтого цвета в ряду предпочтений
Выборки | “Есть эффект”: желтый цвет на первых двух позициях | “Нет эффекта”: желтый цвет на позициях 3-8 | Суммы |
Выборка 1 -отечественная | 39 (38.2%) | 63 (61,8%) | |
Выборка 2 -Х.Клара | 211 (26,4%) | 589 (73,6%) | |
Суммы |
Сформулируем гипотезы:
H0: Доля лиц, помещающих желтый цвет на одну из первых двух позиций, в отечественной выборке не больше, чем в выборке Х.Клара.
H1: Доля лиц, поместивших желтый цвет на одну из первых двух позиций, в отечественной выборке больше, чем в выборке X. Клара.
Далее действуем по Алгоритму 17.
Ответ: H0 отклоняется. Принимается H1: Доля лиц, поместивших желтый цвет на одну из первых двух позиций, в отечественной выборке больше, чем в выборке Х.Клара (р<0,01).
Мы еще раз столкнулись с тем случаем, когда критерий А, сам по себе не выявляет достоверных различий, но помогает максимально использовать возможности критерия φ*.
§
Этот случай чаще всего относится к критерию χ2. Заменить его критерием φ* можно при условии, если сравниваются распределения признака в двух выборках, а сам признак принимает всего два значения[25].
В качестве примера можно привести задачу с соотношением мужских и женских имен в записных книжках двух психологов (см. п. 4.2, Табл. 4.11).
Преобразуем Табл. 4.11 в четырехклеточную таблицу, где “эффектом” будем считать мужские имена.
Таблица 5.18
Четырехклеточная таблица для подсчета φ* при сопоставлении записных книжек двух психологов по соотношению мужских и женских имен
Группы | “Есть аффект”: мужские имена | “Нет аффекта»: женские имена | Суммы | ||
Группа 1 – выборка имен в книжке X. | (32,8%) | (67,2%) | |||
Группа 2 – выборка имен в книжке С. | (35,1%) | (64,9%) | |||
Суммы |
Сформулируем гипотезы.
H0: Доля мужских имен в записной книжке С. не больше, чем в записной книжке X.
H1: Доля мужских имен в записной книжке С. больше, чем в записной книжке X.
Далее действуем по алгоритму.
По Табл. XIII Приложения 1 определяем, какому уровню достоверности соответствует это значение. Мы видим, что такого значения вообще нет в таблице. Построим “ось значимости”.
Полученное эмпирическое значение – далеко в “зоне незначимости”.
f*эмп>f*теор
Ответ: H0 принимается. Доля мужских имен в записной книжке психолога С. не больше, чем в запиской книжке психолога X.
Исследователь сам может решить для себя, какой метод ему в данном случае удобнее применить – χ2или φ*. Похоже, что во втором случае меньше расчетов, хотя чуда не произошло: различия по-прежнему недостоверны.
Итак, мы убедились, что критерий φ* Фишера может эффективно заменять традиционные критерии в тех случаях, когда их применение невозможно, неэффективно или неудобно по каким-то причинам.
Биномиальный критерий m может служить заменой критерия χ2в случае альтернативных распределений или в случае, когда признак может принимать одно из нескольких значений и вероятность того, что он примет определенное значение, известна.
В качестве примера можно привести исследование, посвященное распределению предпочтений по 4-м типам мужественности (см. Задачу 3 к Главе 4). Если бы для испытуемых все 4 типа мужественности были одинаково привлекательными, то на первом месте примерно одинаковое количество раз оказывался бы каждый из типов. Иными словами, вероятность оказаться на первом месте для каждого типа составляла бы 1/4 т.е. Р=0.25.
В действительности же Национальный тип оказался на 1-м месте 19 раз, Современный – 7 раз, Религиозный – 3 раза и Мифологический – 2 раза. Можно попытаться определить, достоверно ли Национальный тип чаще оказывается на 1-м месте, чем это предписывается вероятностью Р=0,25?
Сформулируем гипотезы.
H0; Частота попадания Национального типа мужественности на 1-е место в ряду предпочтений не превышает частоты, соответствующей вероятности Р=0,25.
H1: Частота попадания Национального типа мужественности на 1-е место в ряду предпочтений превышает частоту, соответствующую вероятности Р=0,25.
Определим теоретическую частоту попадания того или иного типа мужественности на 1-е место при равновероятном выборе:
fтеор=n·Р=31-0,25=7,75
В данном случае соблюдаются требования, предусмотренные ограничением 3: Р=0,25<0,50; fэмп>fтеор. Мы можем использовать биномиальный критерий при n<50. В данном случае n=31. По Табл. XV Приложения 1 определяем критические значения m при n=31, Р=0,25; Q=0,75:
Ответ: H0 отвергается. Частота попадания Национального типа мужественности на 1-е место в ряду предпочтений превышает частоту, соответствующую вероятности Р=0,25 (р<0,01).
Итак, Национальный тип мужественности действительно чаще оказывается на 1-м месте, чем это происходило бы в том случае, если бы он выбирался на 1-е место равновероятно с другими типами.
Отметим, что мы проверяли гипотезу не об отличии данного типа мужественности от других типов, а об отличии частоты его встречаемости от теоретически возможной величины при равновероятном выборе. Все остальные типы и остальные позиции выбора остаются “за кадром” нашего рассмотрения.
Аналогичным образом можно сопоставить с теоретической частотой эмпирическую частоту попадания любого другого типа на любую другую позицию.
§
Первоначальное значение термина “корреляции” – взаимная связь (Oxford Advanced Learner’s Dictionary of Current English, 1982). Когда говорят о корреляции, используют термины “корреляционная связь” и”корреляционная зависимость”.
Корреляционная связь – это согласованные изменения двух признаков или большего количества признаков (множественная корреляционная связь). Корреляционная связь отражает тот факт, что изменчивость одного признака находится в некотором соответствии сизменчивостью другого (Плохинский Н.А., 1970, с. 40). “Стохастическая[26]связь имеется тогда, когда каждому из значений одной случайной величины соответствует специфическое (условное) распределение вероятностей значений другой величины, и наоборот, каждому из значений этой другой величины соответствует специфическое (условное) распределение вероятностей значений первой случайной величины” (Суходольский Г.В., 1972, с. 178).
Корреляционная зависимость – это изменения, которые вносят значения одного признака в вероятность появления разных значений другого признака.
Оба термина – корреляционная связь и корреляционная зависимость – часто используются как синонимы (Плохинский Н.А.,1970; Суходольский Г.В.,1972; Артемьева Е.Ю., Мартынов Е.М.,1975 и др.). Между тем, согласованные изменения признаков и отражающая это корреляционная связь между ними может свидетельствовать не о зависимости этих признаков между собой, а зависимости обоих этих признаков от какого-то третьего признака или сочетания признаков, не рассматриваемых в исследовании.
Зависимость подразумевает влияние, связь – любые согласованные изменения, которые могут объясняться сотнями причин. Корреляционные связи не могут рассматриваться как свидетельство причинно-следственной связи, они свидетельствуют лишь о том, что изменениям одного признака, как правило, сопутствуют определенные изменения другого, но находится ли причина изменений в одном из признаков или она оказывается за пределами исследуемой пары признаков, нам неизвестно.
Говорить в строгом смысле о зависимости мы можем только в тех случаях, когда сами оказываем какое-то контролируемое воздействие на испытуемых или так организуем исследование, что оказывается возможным точно определить интенсивность не зависящих от нас воздействий. Воздействия, которые мы можем качественно определить или даже измерить, могут рассматриваться как независимые переменные. Признаки, которые мы измеряем и которые, по нашему предположению, могут изменяться под влиянием независимых переменных, считаются зависимыми переменными. Согласованные изменения независимой и зависимой переменной действительно могут рассматриваться как зависимость.
Однако, учитывая, что число градаций, или уровней, зависимой переменной обычно невелико, целесообразнее применять в такого рода исследованиях не корреляционный метод, а методы выявления тенденций изменения признака при изменении условий, например, критерии тенденций Н Крускала-Уоллиса и L Пейджа (см. Главы 2 и 3) или метод дисперсионного анализа (см. Главы 7 и 8).
Если в исследование включены независимые переменные, которые мы можем по крайней мере учитывать, например, возраст, то можно считать выявляемые между возрастом и психологическими признаками корреляционные связи корреляционными зависимостями. В большинстве же случаев нам трудно определить, что в рассматриваемой паре признаков является независимой, а что – зависимой переменной.
Учитывая, что термин “зависимость” явно или неявно подразумевает влияние, лучше пользоваться более нейтральным термином “корреляционная связь”.
Корреляционные связи различаются по форме, направлению и степени (силе).
По форме корреляционная связь может быть прямолинейной или криволинейной. Прямолинейной может быть, например, связь между количеством тренировок на тренажере и количеством правильно решаемых задач в контрольной сессии. Криволинейной может быть, например, связь между уровнем мотивации и эффективностью выполнения задачи (см. Рис. 6.1). При повышении мотивации эффективность выполнения задачи сначала возрастает, затем достигается оптимальный уровень мотивации, которому соответствует максимальная эффективность выполнения задачи; дальнейшему повышению мотивации сопутствует уже снижение эффективности.
По направлению корреляционная связь может быть положительной (“прямой”) и отрицательной (“обратной”). При положительной прямолинейной корреляции более высоким значениям одного признака соответствуют более высокие значения другого, а более низким значениям одного признака – низкие значения другого (см. Рис. 6.2). При отрицательной корреляции соотношения обратные.
При положительной корреляции коэффициент корреляции имеет положительный знак, например r= 0,207, при отрицательной корреляции – отрицательный знак, например r=—0,207.
Степень, сила или теснота корреляционной связи определяется по величине коэффициента корреляции.
Сила связи не зависит от ее направленности и определяется по абсолютному значению коэффициента корреляции. Максимальное возможное абсолютное значение коэффициента корреляции r=1,00; минимальное r=0.
Используется две системы классификации корреляционных связей по их силе: общая и частная. Общая классификация корреляционных связей (по Ивантер Э.В., Коросову А.В., 1992):
1) сильная, или тесная при коэффициенте корреляции r>0,70;
2) средняя при 0,50<r<0,69;
3) умеренная при 0,30<r<0,49;
4) слабая при 0,20<r<0,29;
5) очень слабая при r<0,19.
Частная классификация корреляционных связей:
1) высокая значимая корреляция при г, соответствующем уровню статистической значимости р<0,01;
2) значимая корреляция при г, соответствующем уровню статистической значимости р<0,05;
3) тенденция достоверной связи при г, соответствующем уровню статистической значимости р<0,10;
4) незначимая корреляция при г, не достигающем уровня статистической значимости .
Две эти классификации не совпадают. Первая ориентирована только на величину коэффициента корреляции, а вторая определяет, какого уровня значимости достигает данная величина коэффициента корреляции при данном объеме выборки. Чем больше объем выборки, Тем меньшей величины коэффициента корреляции оказьюается достаточно, чтобы корреляция была признана дортоверной. В результате при Малом объеме выборки может оказаться так, что сильная корреляция окажется недостоверной. В то же время при больших объемах выборки Даже слабая корреляция может оказаться достоверной.
Обычно принято ориентироваться на вторую классификацию, поскольку она учитывает объем выборки. Вместе с тем, необходимо помнить, что сильная, или высокая, корреляция – это корреляция с коэффициентом r>0,70, а не просто корреляция высокого уровня значимости.
В качестве мер корреляции используются:
1) эмпирические меры тесноты связи, многие из которых были получены еще до открытия метода корреляции, а именно:
а) коэффициент ассоциации, или тетрахорический показатель связи;
б) коэффициенты взаимной сопряженности Пирсона и Чупрова;
в) коэффициент Фехнера;
г) коэффициент корреляции рангов;
2) линейный коэффициент корреляции r,
3) корреляционное отношение η;
4) множественные коэффициенты корреляции и др.
Подробное описание этих мер можно найти в руководствах Ве-нецкого И.Г., Кнльдишева Г.С.(1968), Плохинского Н.А.(1970), Су-ходольского Г.В.(1972), Ивантер Э.В., Коросова А.В.(1992) и др.
В психологических исследованиях чаще всего применяется коэффициент линейной корреляции r Пирсона. Однако этот метод является параметрическим и поэтому не лишен недостатков, свойственных параметрическим методам (см. параграф 1.8). Параметрическими являются, также методы определения корреляционного отношения и подсчета множественных коэффициентов корреляции. Кроме того, эти методы, как правило, требуют машинной обработки данных. По этим причинам они остаются за пределами нашего рассмотрения.
Все эмпирические меры тесноты связи, кроме коэффициента ранговой корреляции, могут быть заменены методами сопоставления и сравнения, изложенными в Главах 2-5.
Ведь что, в сущности, мы доказываем, когда обосновываем различия в долях двух выборок, характеризующихся исследуемым эффектом? Мы показываем, что если испытуемый относится к одной из выборок, то скорее всего он будет характеризоваться какими-то определенными значениями исследуемого признака, а если он относится к другой из двух выборок, то он будет характеризоваться (с большой степенью вероятности) другими значениями исследуемого признака. Фактически мы исследуем сопряженные изменения двух признаков: отнесенность к той или иной выборке и определенные значения исследуемого признака.
Что мы доказываем, с другой стороны, когда два распределения признака оказываются сходными или, наоборот, статистически достоверно различающимися между собой? Мы доказываем, что в обеих выборках частоты встречаемости разных значений признака распределяются согласованно или, наоборот, несогласованно.
Мы, правда, скорее определяем меру рассогласованности, чем согласованкости, но все же часто метод χ2относится к числу методов, выявляющих степень согласованности или даже связи.
Методы выявления тенденций уже напрямую заменяют меры эмлирической сопряженности, позволяя нам проследить возрастание значений признака при изменении условий. Фактически мы отвечаем на вопрос о том, согласованно ли изменяются условия и значения исследуемого признака.
Быть может, современному психологу не очень просто отказаться от метода подсчета корреляций. Это очень привычно – подсчитывать корреляции. Исторически сложилось так, что этот метод является одним из основных методов статистической обработки. Главное преимущество корреляционного анализа состоит в том, что можно сразу провести множественное сопоставление признаков. Например, “нам необходимо определить, с чем связана успешность в какой-либо деятельности. Исследователь может предполагать, что она связана с уровнем интеллектуального развития, с некоторыми из личностных факторов 16-факторного опросника Кеттелла, а может быть, с уровнем эмпатии, тревожности или фрустрационной толерантности, с возрастом самого испытуемого или возрастом матери в момент его рождения и т.д. и т.п. В итоге он получает связи, отражающие среднегрупповые тенденции сопряженного изменения признаков. Но дело как раз в том, что у каждого отдельного испытуемого успешность в данном виде деятельности может определяться разными психологическими характеристиками или разными их сочетаниями. Метод корреляций отдает предпочтение группе, а не отдельному индивиду.
Против этого можно возразить, что и все остальные статистические методы отдают предпочтение среднегрупповым, а не индивидуальным тенденциям. Однако это не совсем так. Например, метод тенденций L Пейджа определяет степень согласованности индивидуальных тенденций, критерий χ2, Фридмана — степень совпадения или несовпадения индивидуальных соотношений рангов, биномиальный критерий m -степень отклонения индивидуальных значений от заданных или среднестатистических и т.п.
Прежде чем переходить к корреляциям, исследователю необходимо проанализировать полученные данные с помощью критериев сравнения и сопоставления еще и по другой причине. Возможно, размах вариативности признака в обследованной выборке окажется слишком узким, чтобы можно было распространять полученную корреляцию на весь возможный диапазон его значений. Например, может оказаться так, что в обследованной группе по какому-либо из факторов 16-факторного личностного опросника Кеттелла получены лишь низкие и средние значения, и в то же время выявлена значимая положительная связь этого личностного фактора с успешностью профессиональной деятельности. Не учитывая истинного размаха значений в данной выборке, можно экстраполировать полученную связь и на высокие значения фактора, что может оказаться ошибкой. Во->первых, связь данного фактора с успешностью деятельности может на самом деле быть криволинейной, как в рассмотренном выше случае связи уровня мотивации с эффективностью выполнения задания (см. Рис. 6.1). Во-вторых, не исключено, что самым важным результатом исследования является как раз факт низких и средних значений данного личностного фактора в обследованной выборке, а исследователь не обратил на него внимания, привычно отдав предпочтение корреляционной матрице, а не таблице первичных данных.
Математическая обработка должна начинаться с использования “самых простых приемов с совершенно понятной для исследователя сутью производимых преобразований” (Дворяшина М.Д., Пехлецкий И.Д., 1976, с. 45). Учитывая большие возможности методов первичной обработки данных, изложенных в Главах 2-5, не исключено, что этими приемами математическая обработка может и заканчиваться. Эти методы дают и основание для достоверных выводов, и материал для выдвижения новых гипотез, и стимул к новым размышлениям.
И все же, если исследователь хочет применить метод корреляций, в настоящем пособии предлагается использовать коэффициент ранговой корреляции Спирмена. Основанием для выбора этого коэффициента служат:
а) его универсальность;
б) простота;
в) широкие возможности в решении задач сравнения индивидуальных или групповых иерархий признаков.
Универсальность коэффициента ранговой корреляции проявляется в том, что он применим к любым количественно измеренным или ранжированным данным. Простота метода позволяет подсчитывать корреляцию “вручную”. Уникальность метода ранговой корреляции состоит в том, что он позволяет сопоставлять не индивидуальные показатели, а индивидуальные иерархии, или профили, что недоступно ни одному из других статистических методов, включая метод линейной корреляции (Плохинский НА., 1970, с. 167).
Коэффициент ранговой корреляции рекомендуется применять в тех случаях, когда нам необходимо проверить, согласованно ли изменяются разные признаки у одного и того же испытуемого и насколько совпадают индивидуальные ранговые показатели у двух отдельных испытуемых или у испытуемого и группы.
6.2. Коэффициент ранговой корреляции rs Спирмена
§
Метод ранговой корреляции Спирмена позволяет определить тесноту (силу) и направление корреляционной связи между двумя признаками или двумя профилями {иерархиями) признаков.
Описание метода
Для подсчета ранговой корреляции необходимо располагать двумя рядами значений, которые могут быть проранжированы. Такими рядами значений могут быть:
1) два признака, измеренные в одной и той же группе испытуемых;
2) две индивидуальные иерархии признаков, выявленные у двух испытуемых по одному и тому же набору признаков (например, личностные профили по 16-факторному опроснику Р. Б. Кеттелла, иерархии ценностей по методике Р. Рокича, последовательности предпочтений в выборе из нескольких альтернатив и др.);
3) две групповые иерархии признаков;
4) индивидуальная и групповая иерархии признаков.
Вначале показатели ранжируются отдельно по каждому из признаков. Как правило, меньшему значению признака начисляется меньший ранг.
Рассмотрим случай 1 (два признака). Здесь ранжируются индивидуальные значения по первому признаку, полученные разными испытуемыми, а затем индивидуальные значения по второму признаку.
Если два признака связаны положительно, то испытуемые, имеющие низкие ранги по одному из них, будут иметь низкие ранги и по другому, а испытуемые, имеющие высокие ранги по одному из признаков, будут иметь по другому признаку также высокие ранги. Для подсчета rsнеобходимо определить разности (d) между рангами, полученными данным испытуемым по обоим признакам. Затем эти показатели d определенным образом преобразуются и вычитаются из 1. Чем меньше разности между рангами, тем больше будет rs, тем ближе он будет к 1.
Если корреляция отсутствует, то все ранги будут перемешаны и между ними не будет никакого соответствия. Формула составлена так, что вэтом случае rs, окажется близким к 0.
В случае отрицательной корреляции низким рангам испытуемых по одному признаку будут соответствовать высокие ранги по другому признаку, и наоборот.
Чем больше несовпадение между рангами испытуемых по двумя переменным, тем ближе rs к -1.
Рассмотрим случай 2 (два индивидуальных профиля). Здесь ранжируются индивидуальные значения, полученные каждым из 2-х испытуемым по определенному (одинаковому для них обоих) набору признаков. Первый ранг получит признак с самым низким значением; второй ранг – признак с более высоким значением и т.д. Очевидно, что все признаки должны быть измерены в одних и тех же единицах, иначе ранжирование невозможно. Например, невозможно проранжировать показатели по личностному опроснику Кеттелла (16PF), если они выражены в “сырых” баллах, поскольку по разным факторам диапазоны значений различны: от 0 до 13, от 0 до 20 и от 0 до 26. Мы не можем сказать, какой из факторов будет занимать первое место по выраженности, пока не приведем все значения к единой шкале (чаще всего это шкала стенов).
Если индивидуальные иерархии двух испытуемых связаны положительно, то признаки, имеющие низкие ранги у одного из них, будут иметь низкие ранги и у другого, и наоборот. Например, если у одного испытуемого фактор Е (доминантность) имеет самый низкий ранг, то иу другого испытуемого он должен иметь низкий ранг, если у одного испытуемого фактор С (эмоциональная устойчивость) имеет высший ранг, то и другой испытуемый должен иметь по этому фактору высокий ранг и т.д.
Рассмотрим случай 3 (два групповых профиля). Здесь ранжируются среднегрупповые значения, полученные в 2-х группах испытуемых по определенному, одинаковому для двух групп, набору признаков. В дальнейшем линия рассуждений такая же, как и в предыдущих двух случаях.
Рассмотрим случай 4 (индивидуальный и групповой профили). Здесь ранжируются отдельно индивидуальные значения испытуемого исреднегрупповые значения по тому же набору признаков, которые получены, как правило, при исключении этого отдельного испытуемого – он не участвует в среднегрупповом профиле, с которым будет сопоставляться его индивидуальный профиль. Ранговая корреляция позволит проверить, насколько согласованы индивидуальный и групповой профили.
Во всех четырех случаях значимость полученного коэффициента корреляции определяется по количеству ранжированных значений N. В первом случае это количество будет совпадать с объемом выборки п. Во втором случае количеством наблюдений будет количество признаков, составляющих иерархию. В третьем и четвертом случае N – это также количество сопоставляемых признаков, а не количество испытуемых в группах. Подробные пояснения даны в примерах.
Если абсолютная величина rs достигает критического значения или превышает его, корреляция достоверна.
Гипотезы
Возможны два варианта гипотез. Первый относится к случаю 1, второй – к трем остальным случаям.
Первый вариант гипотез
H0: Корреляция между переменными А и Б не отличается от нуля.
H1: Корреляция между переменными А и Б достоверно отличается от нуля.
Второй вариант гипотез
H0: Корреляция между иерархиями А и Б не отличается от нуля.
H1:Корреляция между иерархиями А и Б достоверно отличается от нуля.