Геометрическая прогрессия. Формулы и примеры. | Подготовка к ЕГЭ по математике

Геометрическая прогрессия. Формулы и примеры. | Подготовка к ЕГЭ по математике Реферат

Взаимно обратные функции

Напомним, что любая функция у = у(х) представляет собой некоторое правило, которое устанавливает соответствие между значениями х и значениями у. В частности, функция у = х2 ставит в соответствие каждому действительному числу его квадрат. Приведем таблицу, содержащую значения этой функции для целых аргументов от – 2 до 2:

Но если есть соответствие между х и у, то должно существовать и обратное соответствие между у и х. Действительно, строки таблички можно «перевернуть» и она примет следующий вид:

Мы получили два взаимно обратных соответствия. Однако второе из них функцией не является, ведь функция должна ставить в соответствие своему аргументу только одно значение функции. Однако, судя по второй таблице, числу у = 1 соответствует сразу два х: х = – 1 и х = 1. В таком случае математики говорят, что исходная функция у = х2 является необратимой.

Теперь изучим зависимость у = х3. Построим табличку и для неё:

Теперь «перевернем таблицу» и получим следующее:

Мы видим, что как каждому значению х соответствует единственное значение у, так и наоборот, каждому у соответствует единственное значение х. В математике для подобных соответствий используют понятие взаимно-однозначное соответствие.

Для лучшего понимания этого определения отвлечемся от чисел. Пусть в футбольном чемпионате играет несколько команд. Они образуют множество Х команд-участниц соревнования. За множество У примем отдельных футболистов, выступающих на турнире. Каждому игроку соответствует единственная команда, за которую он выступает, но обратное неверно – каждой команде соответствует несколько игроков. Значит, это пример соответствия, не являющегося взаимно-однозначным.

Пусть тренеры команд образуют множество Z. Каждый тренер тренирует лишь одну команду, и наоборот, каждую команду тренирует единственный тренер. Значит, между множествами X и Z есть взаимно-однозначное соответствие.

Вернемся к функциям. Если соответствие, которое задает функция у = у(х), является взаимно-однозначным, то каждому значению у будет соответствовать единственное значение х. Значит, существует некоторая функция х = х(у). Пары функций у = у(х) и х = х(у) называются взаимно обратными функциями.

Ещё раз скажем, что не для любой функции существует обратная функция, ведь не все они определяют взаимно-однозначное соответствие. Если всё же для у = у(х) есть обратная функция х = х(у), то у = у(х) называют обратимой функцией.

Покажем, какие функции являются обратными, на примере пары у = 4х 12 и у = 0,25х – 3. Возьмем, например, значение х = 5 и подставим его в у = 4х 12:

у = 4х 12 = 4•5 12 = 32

Получили 32. Подставим это число в обратную функцию:

у = 0,25х – 3 = 0,25•32 – 3 = 8 – 3 = 5

Получили именно то число, которое первоначально подставили в первую функцию! Возьмем другое произвольное число, например, 10, и подставим его в у = 4х 12:

у = 4•10 12 = 40 12 = 52

Полученный результат подставляем в у = 0,25х – 3:

у = 0,25•52 – 3 = 13 – 3 = 10

Снова получили исходное число! Выберете сами ещё несколько произвольных чисел и убедитесь, что и с ними будет происходить то же самое.

Посмотрим, как получить обратную функцию. Пусть дана зависимость

у = 5х 20

Это, по сути, выражение для вычисления у. Выразим из него х:

у = 5х 20

у – 20 = 5х

(у – 20)/5 = х

х = у/5 – 20/5

х = 0,2у – 4

Получили зависимость х от у. Чтобы мы получили из нее обратную функцию, необходимо просто поменять местами буквы х и у:

у = 0,2х – 4

Убедитесь самостоятельно на нескольких примерах, что полученная функция обратна функции у = 5х 20.

Пример. Найдите функцию, обратную зависимости у = 1/(х 7).

Решение. Умножим обе части равенства у = 1/(х 7) на (х 7):

у(х 7) = 1

Далее поделим обе части нау:

х 7 = 1/у

Перенесем семерку вправо и получим формулу для вычисления х:

х = 1/у – 7

Для получения обратной функции просто меняем х и у местами:

у = 1/х – 7

Ответ: у = 1/х – 7.

Предположим, у нас есть у= у(х), чей график нам известен, и необходимо построить график взаимно обратной функции. Как это сделать? Если одна точка на координатной прямой имеет координаты (a; b) и принадлежит функции у = у(х), то, обратной функции должна принадлежать точка (b; a):

Эти точки симметричны относительно прямой у = х:

Поэтому для построения графика обратной функции достаточно симметрично отобразить его относительно прямой у = х.

С помощью этого правила построим график функции, обратной у = х3:

Практика показывает, что не все школьники (да и взрослые тоже) понимают, что означает симметричность относительно прямой у = х, ведь эта прямая наклонена. Здесь требуется довольно высокий уровень пространственного мышления. Куда проще понять симметрию относительно вертикальной или горизонтальной линии. Поэтому мы покажем ещё один способ построения обратных функций, который состоит из двух этапов.

Он заключается в том, что сначала график отображают симметрично относительно вертикальной оси Оу:

На втором этапе полученное отображение поворачивают по часовой стрелке относительно начала координат:

Заметим важное правило. При построении обратной функции области определения и области значений меняются местами. Действительно, если какое-то число входит в область значения функции, то это значит, что его можно подставить в обратную функцию. Но это в свою очередь означает, что она входит в область определения обратной функции. Проиллюстрируем это правило картинкой:

До сих пор мы рассматривали способы построения обратных функций, но ведь в самом начале урока говорилось о том, что обратная функция существует не всегда. Действительно, попытаемся построить обратную функцию для у = х2:

Получилась та же парабола, но «лежащая на боку». Является ли она графиком функции? Нет. На рисунке проведена вертикальная линия, которая пересевает график в двух точках. Это значит, что одному значению х (в данном случае х = 5) соответствует сразу два значения у. Но подобное соответствие не является функцией. Это значит, что у = х2 – необратимая функция.

Есть ли какой-то признак, позволяющий быстро сказать, является ли функция обратимой? Оказывается, есть. Если функция строго монотонна (то есть либо только возрастает, либо только убывает), то это гарантирует, что она ещё и обратима. Покажем это с помощью рисунков.

К слову, это свойство мы использовали для решения некоторых уравнений. Теперь отобразим график симметрично прямой у = х, причем также отобразим и горизонтальные линии:

Горизонтальные линии превратились в вертикальные, при этом они всё также пересекают график не более чем в одной точке. Но это как раз и означает, что график задает функцию, а не какое-то другое соответствие. Отсюда делаем вывод – любая строго монотонная функция обратима.

Снова вернемся к функции у = х2. Мы уже показали, что она необратима. Но теперь наложим на нее дополнительное ограничение: х⩾0. Тогда от графика параболы останется только одна ветвь. Для нее уже можно построить обратную функцию:

Можно сделать вывод – обратимость функции зависит не только от самого вида функции, но и от того, на какой области определения ее рассматривают.

Иррациональные неравенства

По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:

Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.

Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида

Может быть справедливым только тогда, когда

То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во

при четном n можно заменить системой нер-в

Пример. При каких значениях x справедливо нер-во

Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:

х – 2 < 9

х < 11

Однако подкоренное выражение должно быть неотрицательным, то есть

х – 2 ⩾ 0

x⩾2

Итак, мы получили, что 2 ⩽ х < 11. Напомним, что традиционно решения нер-в записывают с помощью промежутков. Поэтому двойное нер-во 2 ⩽ х < 11 мы заменим на равносильную ему запись х∈[2; 11).

Ответ: х∈[2; 11).

Пример. Решите нер-во

Решение. Возведем нер-во в четвертую степень:

6 – 2х ⩾ 24

6 – 2х ⩾ 16 (1)

– 2х ⩾ 10

х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)

Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во

6 – 2х ⩾ 0 (2)

чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.

Ответ: х∈(– ∞; – 5)

Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.

Пример. Найдите решение нер-ва

Решение. Всё очень просто – надо всего лишь возвести обе части в куб:

х2 – 7x< 23

x2– 7x– 8 < 0

Получили неравенство второй степени, такие мы уже решать умеем. Напомним, что сначала надо решить ур-ние

x2– 7x– 8 = 0

Рефераты:  Пуанкаре | Рефераты KM.RU

D = b2– 4ac = (– 7)2 – 4•1•(– 8) = 49 32 = 81

х1 = (7 – 9)/2 = – 1

х2 = (7 9)/2 = 8

Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x2– 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:

Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.

Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.

Ответ: (– 1; 8).

Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид

Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.

Пример. Решите нер-во

Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):

7 – х3< (1 – х)3

7 – х3< 1 – 3x 3×2– х3

3х2 – 3х – 6 > 0

x2– х – 2 > 0

И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:

x2– х – 2 = 0

D = b2– 4ac = (– 1)2 – 4•1•(– 2) = 1 8 = 9

х1 = (1 – 3)/2 = – 1

х2 = (1 3)/2 = 2

Нер-во выполняется при х∈(– ∞; – 1)⋃(2; ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.

Ответ: (– ∞; – 1)⋃(2; ∞).

Если в нер-ве

стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:

f(x) > 0 (подкоренное выражение не может быть отрицательным);

g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).

Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.

Пример. Решите нер-во

Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим

2х – 5 <(4 – х)2

2х – 5 < 16 – 8х х2

х2 – 10х 21 > 0(1)

Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:

2х – 5 ⩽ 0

2x⩽5

x⩽ 2,5

Во-вторых, выражение 4 – х не может быть отрицательным:

4 – х ⩾ 0

х ⩽ 4

Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):

Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:

Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:

Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:

Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:

Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).

Ответ: [2,5; 3).

Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не «<», то есть оно имеет вид

Его тоже можно решить аналитически, однако мы для простоты рассмотрим только графическое решение.

Пример. Найдите решение нер-ва

Решение. Построим графики обеих частей:

Видно, что в какой-то точке графики пересекаются, после чего график корня будет лежать выше прямой у = 2 – х. Осталось найти точное значение точки, для чего можно составить ур-ние:

Корни квадратного ур-ния найдем через дискриминант:

Мы убедились, что иррациональные ур-ния и нер-ва являются довольно сложными. Для разных задач приходится использовать разные, не всегда стандартные методы решений. Зачем же их вообще надо решать? Оказывается, они часто возникают при геометрических расчетах.

В частности, уравнение, описывающее зависимость расстояния между двумя точками от их координат, является иррациональным. Поэтому при решении многих физических задач, связанных с движением объектов в пространстве, возникает необходимость решать иррациональные ур-ния.

Также важно напомнить, что для поступления в ВУЗ по окончании 11 класса школьники сдают ЕГЭ. В задачах 13 и 15 очень попадаются именно иррациональные ур-ния и нер-ва. Поэтому, если вы желаете в будущем получить высшее образование по экономической (менеджер, аналитик, брокер, банкир), технической (инженер, программист) и тем более физико-математической специальности, то начинайте тренироваться уже сейчас!

Подготовка школьников к егэ и огэ (справочник по математике — алгебра — геометрическая прогрессия)

      Определение 1Числовую последовательность

b1 ,  b2 , … bk , …

все члены которой отличны от нуля, называют геометрической прогрессией, если справедливы равенства

      Определение 2. Если последовательность чисел

b1 ,  b2 , … bk , …

является геометрической прогрессией, то число  q , определенное формулой

называют знаменателем этой геометрической прогрессии.

      Из определений 1 и 2 следует, что для того, чтобы задать геометрическую прогрессию, нужно знать два числа, например, первый член геометрической прогрессии b1 и знаменатель геометрической прогрессии   q . Если числа   b1   и   q   известны, то все остальные члены прогрессии можно найти по формулам:

      По этой причине многие задачи на геометрическую прогрессию удобно решать при помощи составления системы уравнений для определения чисел   b1   и   q.

      Из формул (1) вытекает общая формула

позволяющая по любому номеру   k   вычислить член bk геометрической прогрессии, зная первый член и знаменатель прогрессии. Эта формула носит название формулы общего члена геометрической прогрессии.

      Из формулы (2) вытекает утверждение, называемое характеристическим свойством геометрической прогрессии. Это свойство формулируется так: — «Квадрат каждого члена геометрической прогрессии, начиная со второго, равен произведению своих соседних членов». Таким образом, характеристическое свойство геометрической прогрессии утверждает, что при Геометрическая прогрессия справедливо равенство

      В случае, когда

  b1 > 0   и   q > 0  

все члены геометрической прогрессии будут положительными, и формулу (3) можно переписать в другом виде:

      Равенство (4) означает, что каждый член такой геометрической прогрессии, начиная со второго, равен среднему геометрическому своих соседних членов.

      Если для суммы первых   k   членов геометрической прогрессии ввести обозначение

Sk = b1 b2bk  ,      
k
= 1, 2, 3, …

то, воспользовавшись равенствами (1), получаем

q Sk =
=
b
1q b2qbk q =
=
b
2 b3bk 1 .

      Следовательно,

Sk – q Sk = b1bk 1 .

      Таким образом , при Геометрическая прогрессиябудет справедливо равенство

которое называется формулой для суммы первых k членов геометрической прогрессии.

      В случае, когда   q = 1, все члены геометрической прогрессии равны, что не представляет особого интереса.

      Определение 3. Геометрическую прогрессию называют бесконечно убывающей, если её знаменатель удовлетворяет неравенству

  | q | < 1 .

      В этом случае выполнено равенство

Арифметическая прогрессия

а величину  S называют суммой бесконечно убывающей геометрической прогрессии.

      Более подробно с понятием предела числовой последовательности можно ознакомиться в в разделе «Пределы числовых последовательностей» нашего справочника.

      С примерами решений различных задач по теме «Геометрическая прогрессия» можно ознакомиться в нашем учебном пособии«Арифметическая и геометрическая прогрессии».

   На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

Простейшие иррациональные уравнения

Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:

где а – некоторое число (константа), f(x) – рациональное выражение.

Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:

Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии

n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.

Ответ: корней нет.

Пример. Решите ур-ние

Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:

x– 5 = 62

х = 36 5

х = 41

Ответ: 41.

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:

х – 5 = (– 6)3

х = – 216 5

х = – 211

Ответ: – 211.

Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).

Рефераты:  Обучение / Интернет-лицей | ТПУ

Пример. Найдите решение ур-ния

Решение. Возведем обе части в пятую степень:

х2 – 14х = 25

х2 – 14х – 32 = 0

Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:

D = b2– 4ac = (– 14)2 – 4•1•(– 32) = 196 128 = 324

х1 = (14 – 18)/2 = – 2

х2 = (14 18)/2 = 16

Итак, нашли два корня: (– 2) и 16.

Ответ: (– 2); 16.

Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.

Пример. Решите ур-ние

Решение. Возводим обе части во вторую степень:

х – 2 = (х – 4)2

х – 2 = х2 – 8х 16

х2 – 9х 18 = 0

D = b2– 4ac = (– 9)2 – 4•1•18 = 81 – 72 = 9

х1 = (9 – 3)/2 = 3

х2 = (9 3)/2 = 6

Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):

при х = 3     х – 4 = 3 – 4 = – 1

при х = 6     6 – 4 = 6 – 4 = 2

Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.

Ответ: 6.

Пример. Решите ур-ние

Решение. Здесь используется кубический корень, а потому возведем обе части в куб:

3х2 6х – 25 = (1 – х)3

3х2 6х – 25 = 1 – 3х 3х2 – х3

х3 9х – 26 = 0

Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:

23 9•2 – 26 = 0

8 18 – 26 = 0

0 = 0

Других корней нет. Это следует из того факта, что функция у = х3 9х – 26 является монотонной.

Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:

при х = 2   1 – х = 1 – 2 = – 1

Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:

Ответ: 2.

Свойства дробных степеней и операции с ними

Когда мы изучали степени с целыми показателями, мы выяснили, что правила работы с ними ничем не отличаются от правил работы со степенями с натуральным показателем. Оказывается, эти же правила работают и для степеней с рациональным показателем. Сформулируем основные свойства дробных степеней.

Например, справедливы следующие действия:

50,5•52,5 = 50,5 2,5 = 53 = 125

195/3•191/3 = 195/3 1/3 = 192 = 361

29,36–0,37•29,361,37 = 29,36–0,37 1,37 = 29,361 = 29,36

Вот несколько примеров подобных вычислений:

174,5:173,5 = 174,5–3,5 = 171 = 1

49,36:46,36 = 49,36–6,36 = 43 = 64

2021:2021 = 2021–14 = 20–2

Проиллюстрируем это правило примерами:

(60,25)8 = 60,25•8 = 62 = 36

(93/2)2 = 9(3/2)•2 = 93 = 729

(254)0,125 = 254•0,125 = 250,5 = 5

Покажем, как можно применять данное правило:

41/6•161/6 = (4•64)1/6 = 641/6 = 2

0,51,5•501,5 = (0,5•50)1,5 = 251,5 = 251 0,5 = 251•250,5 = 25•5 = 125

4,90,5•100,5 = (4,9•10)0,5 = 490,5 =7

Это правило можно применять следующим образом:

3600,5:100,5 = (360:10)0,5 = 360,5 = 6

5003:503 = (500:50)3 = 103 = 1000

6,251/4:0,011/4 = (6,25:0,01)1/4 = 6251/4 = 5

Заметим, что степени очень удобны тем, что с их помощью легко упростить работу с корнями, ведь если

то верное и обратное:

То есть любое выражение с корнями в виде степени с рациональным показателем.

Пример. Вычислите значение выражения

Решение. Корней много, поэтому для удобства заменим их степенями

Получили тоже самое выражение, но в более компактном виде. Посчитаем его значение:

(91/4)1/5•39/10 = (90,25)0,2•30,9 = 90,25•0,2•30,9 = 90,05•30,9 = (32)0,05•30,9 =

=32•0,05•30,9 = 30,1•30,9 = 30,1•0,9 = 31 = 3

Ответ: 3.

Пример. Упростите выражение

(81n 1– 65•81n)0,25

Решение. Степень 81n 1можно представить как произведение:

81n 1 = 81n•811 = 81•81n

С учетом этого можно записать:

(81n 1– 65•81n)0,25 = (81•81n– 65•81n)0,25 = (81n(81 – 65))0,25 =

= (81n•16)0,25 = 810,25n •160,25 = 810,25n •161/4 = 2•810,25n

Ответ: 2•810,25n.

Сравнение степеней

Напомним, что из двух корней n-ой степени больше тот, у которого больше подкоренное выражение:

Отсюда следует вывод, что если a<b, то

а1/n<b1/n

теперь возведем каждую часть этого неравенства в степень m. Тогда получим неравенство:

аm/n<bm/n

Получили, что из двух степеней с одинаковыми показателями меньше та, у которой меньше основание (правила сравнения будем нумеровать, чтобы на них удобнее было ссылаться):

В частности, справедливы следующие неравенства:

233,75< 243,75

634/3< 644/3

0,0080,002< 0,0080,002

Здесь мы рассматривали случаи, когда показатель степени является положительным числом. А что делать, если он отрицательный? Тогда степень следует «перевернуть», воспользовавшись уже известной вам формулой:

a–n = 1/an = (1/а)n

Пример. Сравните выражения с рациональным показателем степени:

20–3,14 и 50–3,14

Решение. Избавимся от знака минус в показателе:

20–3,14 = (1/20)3,14 = 0,053,14

50–3,14 = (1/50)3,14 = 0,023,14

Получили две степени с одинаковым и, что принципиально важно, положительным показателем. Из них больше та, у которой больше основание. То есть из неравенства 0,02 < 0,05 следует, что

0,023,14< 0,053,14

Это означает, что

50–3,14< 20–3,14

Ответ: 50–3,14< 20–3,14.

Особенным является случай, когда показатель степени равен нулю. Напомним, что любое число в нулевой степени (кроме самого нуля) равно единице, а выражение 00 не имеет смысл. Это значит, что числа в нулевой степени равны друг другу, даже если у них разные основания:

250 = 260 = 1

9,360 = 9,370 = 1

18,35460 = 12,36470 = 1

Несколько сложнее сравнивать числа, у которых одинаковые основания, но различные показатели. Здесь возможны три случая – основание либо равно единице, либо больше неё, либо меньше неё.

На основании этого правила можно записать, что:

53,14< 53,15

45–0,563< 450,001

1,235–5,623< 1,235–4,958

Единица в любой степени равна самой себе. Поэтому, если у двух чисел в основании записана именно она, то они должны быть равны друг другу:

1–7,56 = 1–0,15 = 10,236 = 1 521,36 = 1

Осталось рассмотреть случай, когда основание меньше единицы (но всё равно положительное). В таком случае ситуация становится противоположной – чем больше степень, тем меньше число. Проиллюстрируем это на примере. Пусть надо сравнить числа 0,57,6 и 0,58,9. Заменим дробь 0,5 так, чтобы вместо нее получилась степень с основанием, большим единицы:

0,5 = 1/2 = 1/(21) = 2–1

Итак, 0,5 = 2–1. Тогда можно записать, что:

0,57,6 = (2–1)7,6 = 2–7,6

0,58,9 = (2–1)8,9 = 2–8,9

Такие числа мы уже умеем сравнивать. Так как

– 8,9 <– 7,6

то и

2–8,9< 2–7,6

Следовательно, 0,57,6> 0,58,9.

Например, справедливы неравенства:

0,997> 0,997,24

0,5715,36> 0,5716,47

0,490,04> 0,490,05

Рассмотрим чуть более сложное задание на сравнение степеней, где надо использовать одновременно несколько правил.

Пример. Докажите, что

0,90,9 0,80,8 0,70,7< 281/3

Решение. Напрямую вычислить значение выражений в правой и левой части затруднительно. Однако мы можем усиливать неравенство, чтобы получить более простые выражения.

Усилить неравенство – это значит увеличить его меньшую или уменьшить большую часть. Например, неравенство 10 < 20 усилится, если вместо 10 написать большее число (11 < 20), или вместо 20 написать меньшее число (10 < 19). Очевидно, что если усиленное неравенство верное, то и изначальное (ослабленное) также справедливо.

Очевидно, что можно легко посчитать значение выражения 271/3:

Также ясно, что 271/3< 281/3 (правило 1). Усилим исходное неравенство:

0,90,9 0,80,8 0,70,7< 271/3 (1)

Действительно, если (1) справедливо, то мы можем записать двойное неравенство

0,90,9 0,80,8 0,70,7< 271/3< 281/3

Опустив здесь среднюю часть, получим исходное неравенство. Так как 271/3 = 3, мы можем переписать (1) так:

0,90,9 0,80,8 0,70,7<3 (2)

Далее будем работать с левой частью. Очевидно, что 0,80,8< 0,90,8 (снова используем правило 1). С другой стороны, 0,90,8< 0,90,7 (правило 3). Значит, можно записать двойное неравенство:

0,80,8< 0,90,8<0,90,7

или просто 0,80,8<0,90,7. Абсолютно аналогично можно записать, что

0,70,8< 0,90,7<0,90,7

Или 0,70,8<0,90,7. Наконец, в силу правила (3), 0,90,9<0,90,7. Итак, имеем три неравенства:

0,90,9<0,90,7

0,80,8<0,90,7

0,70,8<0,90,7

Их левые части стоят в (2). Следовательно, можно усилить (2):

0,90,7 0,90,7 0,90,7<3

3•0,90,7< 3

Поделим обе части на 3:

0,90,7< 1

Заменим единицу равным ему выражением 10,7:

0,90,7<10,7 (4)

Из правила 1 следует, что (4) справедливо. Но мы получили его, усиливая исходное неравенство. Из справедливости более сильного неравенства следует и справедливость более слабого. Следовательно, из справедливости (4) вытекает верность исходного неравенства, которое и надо было доказать.

Степень с рациональным показателем

Напомним, что в 7 классе мы впервые познакомились с понятием степени, причем тогда рассматривались случаи, когда показателем степени является натуральное число. В 8 классе понятие степени было расширено, теперь в него включались случаи, когда показатель являлся целым числом.

При расширении понятия степени важно обеспечить то, чтобы уже известные правила работы с целыми степенями работали и для дробных показателей. Одно из свойств степеней выглядит так:

(am)n = amn

Подставим в эту формулу следующие значения переменных:

а = 3

m = 1/6

n = 6

Мы специально выбрали эти числа такими, чтобы произведение mn равнялось единице:

mn = (1/6)•6 = 1

Подставляем эти значения:

(31/6)6 = 31/6•6 = 31 = 3

Получили, что

(31/6)6 = 3

Однако по определению корня n-ой степени число, дающее при возведении в шестую степень тройку, является корнем шестой степени из трех. То есть можно записать:

С помощью подобных преобразований нам удалось указать, чему равно число, возведенное в дробную степень. Аналогично можно показать, что для любого а > 0 справедлива формула:

Действительно, если возвести левую часть в n-ую степень, то получим:

(а1/n)n = a1/n•n = a

Значит, по определению корня n-ой степени

Ограничение а > 0 необходимо для того, чтобы не рассматривать случаи, когда подкоренное выражение является отрицательным.

Продолжим наши рассуждения. Чему будет равна степень аm/n? Ясно, что дробь m/n можно представить в виде:

m/n = (1/n)•m

Рефераты:  Мир романа "Белой гвардии"

C учетом этого выполним преобразование:

В результате несложных преобразований нам удалось получить формулу, позволяющую возводить число в степень, у которой рациональный показатель!

Приведем несколько примеров вычисления дробных степеней:

Часто при вычислениях удобнее сначала извлечь корень из числа, а потом полученный результат возвести в степень:

Напомним, что одну и ту же дробь можно представить разными способами, например:

1/2 = 2/4 = 3/6 = 4/8 = 5/10 = 0,5

Возникает вопрос – изменится ли значение дробной степени, если мы приведем дробь к новому знаменателю? Очевидно, что нет, но всё же убедимся в этом на примере. Сначала возведем в степень 1/2 число 25:

Теперь заменим дробь 1/2 на идентичную ей дробь 2/4:

Результат не изменился. В общем случае есть смысл максимально сократить дробь перед вычислением, чтобы избежать операций с большими числами. Особенно это касается десятичных дробей. Например, пусть необходимо вычислить значение выражения 810,25. По определению десятичной дроби можно записать, что 0,25 = 25/100. Тогда вычислить 810,25 можно так:

Согласитесь, возводить число 81 в 25-ую степень не очень легко! Поэтому поступим иначе. Сократим дробь 25/100:

0,25 = 25/100 = 25/(25•4) = 1/4

Теперь вычисления будет более простыми:

Вообще легко запомнить, что 0,25 = 1/4, а 0,5 = 1/2. Замена десятичных дробей обыкновенными дробями сильно упрощает вычисления. Приведем примеры:

Сумма бесконечно убывающей геометрической прогрессии

Легко заметить, что если знаменателем геом. прог-сии – это положительное число, которое больше единицы, то прог-сия является убывающей послед-тью. Такие последовательности называют бесконечно убывающими геометрическими прогрессиями.

В качестве примера приведем послед-ть, у которой z1 = 1, q = 1/2:

Каждый ее член может быть рассчитан по формуле

Очевидно, что чем больше n, тем меньше zn, причем значение zn как бы стремится к нулю. Например, на компьютере можно посчитать, что

То, что величина (1/2)n–1 при больших n стремится к нулю, в математике записывается так:

Запись «lim» означает «предел», а символ «∞» означает бесконечность. Выражение читается так: «предел (1/2)n–1 при n, стремящемся к бесконечности, равен нулю». Мы не будем давать строгое определение понятия «предел», так как эта задача выходит за рамки элементарной математики и относится уже к математике высшей.

Отобразим сумму первых n членов послед-ти

с помощью координатной прямой. Пусть в точке с координатой 0 находится точка B. Отложим от нее вправо точку А1 так, чтобы ВА1 =z1 = 1. Далее от точки А1 также вправо будем откладывать точку А2, но длина отрезка А1А2 будет уже вдвое меньше, то есть она составит 1/2. Будем и далее откладывать точки А3, А4… до какой то точки Аn:

С одной стороны, длина каждого следующего отрезка будет равна члену геом. прог-сии:

C другой стороны, длина отрезков BA1, BA2, BA3… будет равна сумме нескольких первых членов геом. прог-сии:

Отметим, что при таком построении с увеличением n точка Аn всё ближе приближается к числу 2, однако так и не доходит до нее. Действительно, каждая следующая точка делит оставшееся расстояние надвое, поэтому она всегда остается левее точки 2, но приближается к ней.

На рисунке мы рассмотрели поведение послед-ти, у которой q = 1/2. Однако оказывается, что и любая другая бесконечная убывающая геометрическая прогрессия ведет себя похожим образом. Для каждой такой послед-ти существует предел суммы ее членов. Покажем, как его найти.

Запишем формулу суммы n членов геом. прог-сии в более удобном дробном виде:

Умножим и числитель, и знаменатель одновременно на (– 1), при этом можно будет поменять местами уменьшаемое и вычитаемое:

Далее выделим целую часть:

Проанализируем полученное выражение. Уменьшаемое z1/(1 – q) не содержит переменной n, а потому не зависит от этой переменной. А вот вычитаемое содержит множитель qn. Можно доказать, что если выполняется условие–1 <q< 1, то с ростом n этот множитель стремится к нулю:

Значит, и всё вычитаемое также стремится к нулю:

Получается, что при, бесконечно большом значении n сумма S∞ может быть вычислена так:

Итак, удалось получить формулу S∞ = z1/(1 – q). Ещё раз отметим, что по-настоящему строгое доказательство требует использование понятие предела из высшей математики, а потому не рассматривается здесь.

Зачем вообще находить сумму бесконечной геометрической прогрессии? Оказывается, что такая задача встает при изучении ряда других разделов математики, а также при расчете вероятностей некоторых событий.

Пример. Найдите сумму S∞ для прог-сии, у которой z1 = 0,1, q = 0,1.

Решение. Запишем первые несколько членов прог-сии:

Теперь будем записывать суммы Sn этой прог-сии:

Очевидно, что при бесконечном n получается бесконечная периодическая дробь:

Подробнее о бесконечных периодических дробях можно узнать из этого урока.

Теперь найдем сумму S∞, используя формулу S∞ = z1/(1 – q):

Получили дробь 1/9. Получается, что обыкновенная дробь 1/9 и бесконечная периодическая дробь 0,(1) – это одно и то же число! И действительно, если на калькуляторе поделить 1 на 9, то он покажет 0,111111111…:

Пример. Какая дробь при разложении ее в бесконечную десятичную дробь дает число 0,010101010101 = 0,(01)?

Решение: По аналогии с предыдущей задачей можно записать:

0,(01) = 0,01010101… = 0,01 0,0001 0,000001 0,00000001…

Получили слева сумму бесконечной прог-сии

в которой z1 = 0,01, а знаменатель q = 0,01. Ее сумма может быть рассчитана по формуле:

Получили дробь 1/99. То есть

Проверим себя с помощью калькулятора:

Пример. В квадрат со стороной 1 вписали другой квадрат, причем его вершины располагаются на серединах описанного квадрата. По тому же принципу в полученный квадрат вписали следующий квадрат, в него ещё один и т. д. Чему равна общая площадь всех полученных квадратов и каков их общий периметр?

Решение. Сторона первого квадрата равна 1. Найдем сторону вписанного треугольника:

Изучим треугольник АВС. В нем АВ = ВС = 1/2 (ведь они составляют половину от сторон DB и BF, который по условию равны 1). Угол АВС – прямой, а потому можно воспользоваться теоремой Пифагора:

Получили, что сторона вписанного квадрата в √2 раз меньше, чем сторона исходного квадрата. Аналогично можно показать, что и у следующего квадрата сторона будет ещё в √2 раз меньше и т. д. Соответственно и периметры квадратов будут уменьшаться в √2 раз, при этом периметр первого квадрата равен 4•1 = 4.

Получаем, что периметры квадратов образуют убывающую геом. прог-сию, в которой

Найдем сумму S∞ для этой прог-сии:

Итак, общий периметр найден. Теперь найдем сумму площадей. Площадь исходного квадрата равна 1•1 = 1. Площадь вписанного квадрата составляет:

Получили, что площадь вписанного квадрата вдвое меньше площади исходного. Тогда площади квадратов образуют геом. прог-сию, в которой

Найдем и для этой прог-сии сумму:

Итак, суммарная площадь всех квадратов равна двум.

Наконец, рассмотрим задачу, имеющую практическое содержание.

Пример. Два спортсмена, Вася и Петя, играют в настольный теннис. Счет в их партии равен 10:10, и поэтому у них действует правило «баланса». Согласно нему, игроки при равном счете должны разыграть два очка, причем в первом розыгрыше подавать будет Вася, а во втором – Петя.

Если одному игроку удастся выиграть оба очка, то он выиграет всю партию. Если каждый из игроков выиграет по одному розыгрышу, то счет в их партии становится равным, и тогда им снова надо разыгрывать ещё два очка. Проще говоря, партия не закончится, пока разница в счете не составит два очка.

Известно, что при подаче Васи вероятность его победы в розыгрыше составляет 0,7. При подаче Пети шансы подающего на выигрыш очка равны 0,6. Каковы шансы Васи и Пети на победу в партии?

Решение. По условию начальный счет равен 10:10. Будем считать, что первое число в счете – это очки Васи,а второе – очки Пети. Игра закончится победой одного из игроков, когда его преимущество в счете достигнет 2 очков. Тогда возможные варианты развития событий можно изобразить с помощью схемы:

Обратим внимание, что в игре возможно бесконечное количество вариантов развития событий. Так, окончательный счет может быть равен даже 102:100 или 100002:100000 (хотя это и крайне маловероятно). Пусть вероятность, что игра закончится, например, со счетом 15:

Первую подачу при счете «ровно» Вася выиграет с вероятностью 0,7, поэтому шансы Пети забрать 1-ое очко себе равны 1 – 0,7 = 0,3.

На второй подаче Петя выиграет с вероятностью 0,6, а шансы Васи составят 1 – 0,6 = 0,4.

Тогда вероятность, что Вася выиграет оба очка, составит

Для Пети вероятность забрать себе оба очка равна

Есть и третий вариант развития событий – после двух розыгрышей счет останется равным (каждый выиграет один мяч), и снова возникает «баланс». Вероятность такого исхода равна

Следовательно, можно записать:

Счета 13:11, 12:12 и 11:13 могут наступить только в том случае, если сначала был достигнут счет 11:11. «Переход» из счета 11:11 к счету 13:11 произойдет, если Вася выиграет два очка подряд, а вероятность такого исхода мы уже считали: Рв = 0,7•0,4 = 0,28. Поэтому можно записать

Аналогично для счетов 12:12 и 11:13 запишем:

Следующие три счета, 14:12, 13:13 и 12:14, возможны только после счета 12:12. Их вероятности записываются так:

По аналогии для счетов 15:13, 14:14 и 13:15 можно записать:

Такие записи можно продолжать бесконечно. Однако легко увидеть, что вероятности счетов, победных для Васи, образуют геом. прог-сию:

Её первый член равен 0,28, а знаменатель составляет 0,54. Тогда сумма всех этих вероятностей, а значит и общая вероятность победы Васи, составит

Аналогично и счета, выигрышные для Пети, образуют геом. прог-сию:

Здесь z1 = 0,18; q = 0,54. Найдем сумму геометрической прогрессии:

Проверим себя. Ясно, что партию выиграет либо Вася, либо Петя. То есть сумма вероятностей их побед должна равняться единице. И действительно:

Значит, наши расчеты верны.

Ответ: Вася выиграет с вероятностью 14/23, а шансы Пети равны 9/23.

Оцените статью
Реферат Зона
Добавить комментарий