Неограниченные возможности головного мозга. Реферат. Биология. 2013-12-13

Неограниченные возможности головного мозга. Реферат. Биология. 2013-12-13 Реферат

Реферат: головной мозг человека –

Министерство Образования Республики Беларусь

Учреждение Образования:

«Белорусский Государственный Педагогический Университет имени Максима Танка»

Управляемая самостоятельная работа студента

по дисциплине «Физиология поведения (семинар)»

Выполнила: студентка I курса 16гр.

Бобок Анжелика

Проверила: Голодок Т. М.

2021г

Содержание:

1.

2.

3.

1.Схема строения головного мозга человека:

Неограниченные возможности головного мозга. Реферат. Биология. 2013-12-13

Головной мозг располагается в полости черепа. Его верхняя поверхность выпуклая, а нижняя поверхность – основание головного мозга – утолщенная и неровная. В области основания от головного мозга отходят 12 пар черепных (или черепномозговых) нервов. В головном мозге различают полушария большого мозга (наиболее новую в эволюционном развитии часть) и ствол с мозжечком. Масса мозга взрослого в среднем равна у мужчин 1375 г, у женщин 1245 г. Масса мозга новорожденного в среднем 330 – 340 г. В эмбриональном периоде и в первые годы жизни головной мозг интенсивно растет, но только к 20 годам достигает окончательной величины.

Передний мозг:

Передний мозг
— передняя часть головного мозга, состоящая из двух полушарий. Включает серое вещество коры, подкорковые ядра, а также нервные волокна, образующие белое вещество.

Передний мозг занимается главным образом обработкой сигналов, поступающих от органов чувств. Средний мозг состоит преимущественно из нервных волокон, соединяющих между собой два других отдела. В заднем отделе расположены зоны, отвечающие за равновесие и координацию мышечных движений, а также проводящие пути между головным и спинным мозгом и нервы, рассылающие импульсы в органы тела.

В процессе эволюции усложнилось его строение, а вместе с ним и роль как важного центра обработки и реагирования на сигналы от органов чувств. У Homo sapiens, т. е. человека разумного, 80% всего объёма головного мозга приходится именно на передний отдел.

Конечный мозг развивается из переднего мозгового пузыря, состоит из сильно развитых парных частей – правого и левого полушария и соединяющей их срединной части.

Неограниченные возможности головного мозга. Реферат. Биология. 2013-12-13

Рисунок: Борозды и извилины левого полушария большого мозга; верхнелатеральная поверхность.

Полушария разделены продольной щелью, в глубине которой лежит пластинка белого вещества, состоящая из волокон, соединяющих два полушария,- мозолистое тело. Под мозолистым телом находится свод, представляющий собой два изогнутых волокнистых тяжа, которые в средней части соединены между собой, а спереди и сзади расходятся, образуя столбы и ножки свода. Спереди от столбов свода находится передняя спайка. Между передней частью мозолистого тела и сводом натянута тонкая вертикальная пластинка мозговой ткани – прозрачная перегородка.

Полушарие образовано серым и белым веществом. В нем различают самую большую часть, покрытую бороздами и извилинами, – плащ, образованный лежащим по поверхности серым веществом – корой полушарий; обонятельный мозг и скопления серого вещества внутри полушарий – базальные ядра. Два последних отдела составляют наиболее старую в эволюционном развитии часть полушария. Полостями конечного мозга являются боковые желудочки.

В каждом полушарии различают три поверхности: верхнебоковую (верхнелатеральную) выпуклую соответственно своду черепа, срединную (медиальную) – плоскую, обращенную к такой же поверхности другого полушария, и нижнюю – неправильной формы. Поверхность полушария имеет сложный рисунок, благодаря идущим в различных направлениях бороздам и валикам между ними – извилинам. Величина и форма борозд и извилин подвержены значительным индивидуальным колебаниям. Однако существует несколько постоянных борозд, которые ясно выражены у всех и раньше других появляются в процессе развития зародыша.

Ими пользуются для разделения полушарий на большие участки, называемые долями. Каждое полушарие делят на пять долей: лобную, теменную, затылочную, височную и скрытую долю, или островок, расположенный в глубине боковой борозды. Границей между лобной и теменной долями является центральная борозда, между теменной и затылочной – теменно-затылочная. Височная доля отделена от остальных боковой бороздой. На верхнелатеральной поверхности полушария в лобной доле различают предцентральную борозду, отделяющую предцентральную извилину, и две лобные борозды: верхнюю и нижнюю, делящие остальную часть лобной доли на верхнюю, среднюю и нижнюю лобные извилины.

Промежуточный мозг:

Промежуточный мозг представлен следующими отделами1) областью зрительных бугров (таламическая область), которая расположена в дорсальных его участках;2) гипоталамусом (подталамическая область), составляющим вентральные отделы промежуточного мозга;3) III желудочком, имеющим вид продольной (сагитальной) щели между правым и левым зрительными буграми и соединяющимися через межжелудочковое отверстие с боковыми желудочками. В свою очередь таламическая область подразделяется на таламус(зрительный бугор), метаталамус (медеальное и латеральное коленчатые тела)и эпиталамус (шишковидное тело, поводки, спайки поводков и эпиталамическаяспайка). Зрительные бугры состоят из серого вещества, в котором различаютотдельные скопления нервных клеток (ядра зрительного бугра), разделеннымитонкими прослойками белого вещества. В связи с тем что здесь переключаетсябольшая часть чувствительных проводящих путей, зрительный бугор фактическиявляется подкорковым чувствительным центром, а его подушка – подкорковымзрительным центром. К медиальной поверхности зрительных бугров при помощи поводковприсоединяется шишковидное тело – эпифиз. Гипоталамус составляет вентральный отдел промежуточного мозга иучаствует в образовании дна III желудочка. К гипоталамусу относятся серыйбугор с воронкой и гипофизом – железной внутренней секреции, зрительныйтракт, зрительный перекрест, сосцевидные тела. Гипоталамус представляет собой продолжение ножек мозга в промежуточныймозг. Серое вещество подталамической области располагается в виде ядер,способных вырабатывать нейросекрет и транспортировать его в гипофиз,регулируя эндокринную работу последнего. Таким образом, серое вещество промежуточного мозга составляют ядра,относящиеся к подкорковым центрам всех видов чувствительности. В областипромежуточного мозга расположены ретикулярная формация, центрыэкстрапирамидной системы, вегетативные центры, регулирующие все виды обменавеществ и нейросекретные ядра. Белое вещество промежуточного мозга представлено проводящими путямивосходящего и нисходящего направлений, обеспечивающих двустороннюю связькоры головного мозга с подкорковыми образованиями и центрами спинногомозга. Помимо этого, к промежуточному мозгу относятся две железы внутреннейсекреции – гипофиз и шишковидное тело, принимающие участие вместе ссоответствующими ядрами гипоталамуса и эпиталамуса и образованиигипоталамогипофмзарной и эпиталамо-эпифизарной систем. Средний мозг:
Средний мозг состоит из дорсального отдела крыши среднего мозга и

вентрального – ножек мозга, которые разграничиваются полостью –

водопроводом мозга. Нижней границей среднего мозга на его вентральной

поверхности является передний край моста, верхний зрительный тракт и

уровень сосцевидных тел. На препарате головного мозга пластинку

четверхоломия, или крышу среднего мозга, можно увидеть лишь после удаления

полушарий большого мозга.

На основании головного мозга хорошо видна вторая часть среднего мозга

в виде двух толстых белых расходящихся пучков, идущих в ткань полушарий

большого мозга, – это ножки мозга. Углубление между правой и левой ножками

мозга называются межножковой ямкой, из нее выходят корешки

глазодвигательных нервов. Впереди о ядра глазодвигательного нерва лежит

ядро медиального продольного пучка. Самым крупным ядром среднего мозга

является красное ядро – одно из центральных координационных ядер

экстрапирамидной системы. Рядом с водопроводом лежит ретикулярная форма

среднего мозга.

На поперечном разрезе отчетливо видно черепное вещество, которое делит

ножку мозга на два отдела: дорсальный – покрышку среднего мозга и

вентральный – основание ножки мозга. В покрышке среднего мозга

располагаются ядра среднего мозга и проходят восходящие проводящие пути.

Вентральные отделы ножек мозга целиком состоят из белого вещества, здесь

проходят нисходящие проводящие пути.

Функциональное значение среднего мозга состоит в том. что здесь

расположены подкорковые центры слуха и зрения; ядра головных нервов,

обеспечивающих иннервацию поперечнополосатых и гладких мышц глазного

яблока: ядра, относящиеся к экстрапирамидной системе, обеспечивающей

сокращение мышц тела во время автоматических движений. Через средний мозг

следуют нисходящие (двигательные) и восходящие (чувствительные) проводящие

пути. Область среднего мозга является также местом расположения

Задний мозг:

К заднему мозгу относятся мозговой мост и мозжечок: Он развивается из четвертого мозгового пузыря.

Мост

Неограниченные возможности головного мозга. Реферат. Биология. 2013-12-13

Рисунок:Ствол головного мозга и мозжечок; вид сбоку

Мост снизу граничит с продолговатым мозгом, сверху переходит в ножки мозга, боковые его отделы образуют средние ножки мозжечка.

В передней (вентральной) части моста располагаются скопления серого вещества – собственные ядра моста, в задней (дорсальной) его части лежат ядра верхней оливы, ретикулярной формации и ядра V – VIII пар черепных нервов. Эти нервы выходят на основании мозга сбоку от моста и позади него на границе с мозжечком и продолговатым мозгом. Белое вещество моста в его передней части (основании) представлено поперечно идущими волокнами, направляющимися в средние ножки мозжечка. Они пронизываются мощными продольными пучками волокон пирамидных путей, образующих затем пирамиды продолговатого мозга и направляющихся в спинной мозг. В задней части (покрышке) проходят восходящие и нисходящие системы волокон.

Мост:

Мост мозга-это толстый, белого цвета вал, который находится в головном мозге и граничит с продолговатым мозгом сзади и с ножками мозга спереди. Мост мозга
не видно снаружи так как он находится под мозжечком. Мост участвует в образовании дна 4 желудочка – ромбовидной ямки (подробнее см.продолговатый моз). На боковой стороне моста находятся средние мозжечковые ножки (ещё есть верхние и нижние).
Также в середине моста находится ямка, в которой залегает базилярная (основная) артерия головного мозга. Внутреннее строени моста сложное – он состоит из вентральной и дорсальной частей, а также трапециевидного тела, заложенного между ними. Мост также подчиняется общим принципам строения человека (точнее законам строения нервной системы) и состоит из серого и белого вещества. Трапециевидное тело содержит в своём составе слуховые волокна, т.е. через мост проходят волокна слухового пути далее в головной мозг (так называемые восходящие волокна).
Также в области трапециевидного тела расположено ядро этого слухового пути – дорсальное ядро трапециевидного тела. На вентральной стороне моста мозга
располагаются продольные и поперечные волокна, а среди них разбросаны собственные ядра моста. Продольные волокна относят к пирамидным путям, а поперечные волокна идут к коре мозжечка. Таким образом можно сказать что мост и мозжечок выполняют функцию координации движения и слухопроведения (последнее больше относится к мосту). Можно сказать чем сильнее развита кора головного мозга, тем сильнее развиты мост и мозжеок. Вот почему у низших позвоночных моста нет, а у человека он развит достаточно хорошо.

Мозжечек:
Мозжечок составляет более крупную, чем мост, часть заднего мозга,которая заполняет собой большую часть задней черепной ямки.В мозжечке различают верхнюю и нижнюю поверхности, границами междукоторыми являются передний и задний края.Верхняя поверхность мозжечка на целом мозге прикрыта затылочнымидолями полушарий большого мозга и отделена от них глубокой поперечной щельюбольшого мозга. В мозжечке различают непарную серединную часть – червь, дваполушария. поперечными бороздами червь расчленен на мелкие извилины,которые придают ему некоторое сходство с кольчатым червем. Обе поверхностиполушарий и червя изрезанны множеством поперечных параллельно идущих мелкихбороздок, между которыми находятся длинные и узкие извилины мозжечка.Группа извилин, отделенных более глубокими бороздами, образуют долькимозжечка. Полушария мозжечка и червь состоят из белого вещества,расположенного внутри, и тонкой прослойки серого вещества коры мозжечка,окаймляющего белое вещество по периферии. Кора мозжечка представлена тремяслоями нервных клеток. На сагитальном разрезе белое вещество мозжечкапредставлена тремя слоями нервных клеток и имеет вид ветвистого дерева. В толще белого вещества обнаруживаются отдельные парные скоплениянервных клеток, которые образуют зубчатое, пробковидное, шаровидное ядрамозжечка и ядра шатра. В мозговом стволе следующим после моста отделом, небольшим , нофункционально важным , является перешее ромбовидного мозга, состоящий изверхних ножек мозжечка, верхнего мозгового паруса и треугольной петли, вкотором проходят волокна латеральной (слуховой ) петли.

2.Топография основных отделов головного мозга.

3.Проводящие пути головного мозга.

В нервной системе нейроны образуют между собой синапсы, формируют цепи и сети, по которым нервные импульсы распространяются только в определенных направлениях. От рецепторных (чувствительных) нейронов через вставочные нервные клетки импульсы следуют к эффекторным нейронам. В синапсах импульсы проводятся только в одном направлении — от пресинаптической мембраны к постсинаптической.
По одним цепям нейронов импульс распространяется центростремительно — от места его возникновения в коже, слизистых оболочках, органах движения, сосудах, тканях и органах к спинному или головному мозгу.
По другим цепям нейронов импульсы проводятся центребежно — из мозга на периферию, к рабочим органам: мышцам, железам, тканям. Нервные волокна, несущие импульсы из спинного мозга в головной мозг или в обратном направлении, складываются в пучки, образующие проводящие пути. Проводящие пути — это совокупность тесно расположенных нервных волокон, проходящих в определенных зонах белого вещества головного, спинного мозга, соединяющих различные нервные центры и проводящих одинаковые нервные импульсы
В спинном и головном мозге выделяют три группы нервных волокон (проводящих путей): ассоциативные, комиссуральные и проекционные.
Ассоциативныенервные волокна
(короткие и длинные проводящие пути) соединяют между собой нервные центры, расположенные в одной половине мозга. Короткие (внутридолевые) соединяют близлежащие участки серого вещества и располагаются в пределах одной доли (отдела) головного мозга или соседних сегментов спинного мозга. Длинные (междолевые) ассоциативные пучки соединяют между собой участки серого вещества, расположенные на значительном расстоянии друг от друга, обычно в различных долях (отделах) головного мозга или сегментах спинного мозга. К длинным ассоциативным путям больших полушарий относятся верхний продольный пучок, соединяющий кору лобной доли с теменной и затылочной, нижний продольный пучок, связывающий серое вещество височной доли с затылочной, и крючковидный пучок, соединяющий кору в области лобного полюса с передней частью височной доли.
В спинном мозге ассоциативные волокна образуют собственные пучки спинного мозга (межсегментарные пучки), которые располагаются вблизи серого вещества.
Комиссуральные
(спаечные) нервные волокна (проводящие пути) соединяют одинаковые нервные центры правого илевого полушарий большого мозга. Комиссуральные проводящие пути проходят через мозолистое тело, спайку свода, переднюю спайку. Мозолистое тело соединяет между собой новые, более молодые отделы коры большого мозга правого и левого полушарий, в которых волокна расходятся веерообразно,образуя лучистость мозолистого тела. В передней спайке проходят волокна, соединяющие участки коры височных долей обоих полушарий, принадлежащие обонятельному (более древнему) мозгу.
Проекционные нервные волокна (проводящие пути) соединяют спинной мозг с головным, ядра мозгового ствола с ба- зальными ядрами и корой большого мозга (восходящие пути), а также головной мозг со спинным (нисходящие пути). Восходящие проекционные пути (проводящие пути), афферентные, чувствительные, проводят к коре большого мозга нервные импульсы, возникающие в результате воздействия на организм различных факторов внешней среды, включая импульсы, идущие от органов чувств, опорно-двигательного аппарата, внутренних органов и сосудов. В зависимости от этого восходящие проекционные пути делятся на три группы: экстероцептивные, проприоцептивные, интероцептивные. Экстероцептивные пути несут болевые, температурные, тактильные импульсы от кожного покрова, от органов чувств (зрения, слуха, вкуса, обоняния).
Проводящий путь
болевой и температурной чувствительности (латеральный спинно-таламический путь) состоит из трех нейронов. Рецепторы первого (чувствительного) ней-рона, воспринимающие указанные раздражения, располагаются в коже и слизистых оболочках, а его тело лежит в спинномозговом узле. Центральный отросток чувствительного нейрона в составе заднего корешка направляется в задний рог спинного мозга и заканчивается синапсами на клетках второго нейрона. Аксоны вторых нейронов, тела которых лежат в заднем роге, через переднюю спайку переходят на противопо- ложную сторону спинного мозга, входят в боковой канатик, образуя латеральный спинно-таламический путь. Этот путь поднимается в продолговатый мозг, проходит в покрышке моста, покрышке среднего мозга и заканчивается в таламусе (вентральное заднее ядро и медиальные ядра). Аксоны клеток таламуса (III нейрон) направляются к внутренней зернистой пластинке коры (IV слой) постцентральной извилины, где находится корковый конец анализатора общей чувствительности.
Проводящий путь осязания и давления (передний спинно-таламический путь) несет импульсы от рецепторов кожи к клеткам коры постцентральной извилины. Ход волокон первого нейрона этого пути аналогичен предыдущему. Большинство аксонов второго нейрона также переходят через переднюю спайку на противоположную сторону спинного мозга в передний канатик и в его составе следуют вверх, к таламусу, а затем в постцентральную извилину. Часть волокон второго нейрона идет в составе заднего канатика спинного мозга своей стороны вместе с аксонами проводящего пути проприоцептивной чувствительности коркового направления.
Проприоцептивные
пути проводят импульсы от органов опорно-двигательного аппарата (от мышц, сухожилий, капсул суставов, связок). К коре постцентральной извилины этот путь несет информацию о положении частей тела, объеме движений, мышечном тонусе, натяжении сухожилий. Прсприоцептивная чувствительность позволяет человеку оценивать положение частей своего тела в пространстве, анализировать собственные сложные движения и дает возможность проводить целенаправленную их коррекцию. Тела первого нейрона этого пути также лежат в спинномозговом узле. Их аксоны в составе задних корешков спинномозговых нервов, не входя в задний рог, направляются в задний канатик, где образуют тонкий и клиновидный пучки. Нервные волокна следуют вверх в продолговатый мозг к тонкому и клиновидному ядрам. Аксоны вторых нейронов, выходящие из этих ядер, переходят на противоположную сторону, образуя медиальную петлю, проходят через покрышку моста и покрышку среднего мозга и заканчиваются в таламусе синапсами на телах третьих нейронов (передняя часть вентрального заднего ядра). Аксоны нейронов таламуса направляются в кору, расположенную перед постцентральной извилиной в глубине центральной борозды, к нейронам IV слоя. Часть волокон вторых нейронов по выходе из тонкого и клиновидного ядер направляется через нижнюю мозжечковую ножку в кору червя своей стороны. Другая часть волокон переходит на противоположную сторону и также через нижнюю мозжечковую ножку направляется к коре червя противоположной стороны. Эти волокна несут проприоцептивные импульсы к мозжечку для коррекции подсознательных движений опорно-двигательного аппарата. Имеются также проприоцептивные передний и задний спинно-мозжечковые пути, которые несут в мозжечок информацию о состоянии опорно-двигательного аппарата и двигательных центров спинного мозга.
Интероцептивные
пути проводят импульсы от внутренних органов и сосудов. Расположенные в них рецепторы (механо-, баро-, хемо-) воспринимают информацию о состоянии гомеостаза, интенсивности обменных процессов, химическом составе тканевой жидкости, крови, давлении в сосудах и т. д. Нисходящие проводящие пути несут импульсы от коры большого мозга и подкорковых центров к ядрам мозгового ствола и к двигательным и промежуточным ядрам передних рогов спинного мозга. Нисходящие пути подразделяются на
две группы: пирамидные (главный двигательный путь) и экстрапирамидные .
Главный двигательный, или пирамидный, путь представляет собой систему нервных волокон, по которым произвольные двигательные импульсы от гигантских нейронов (пирамидных клеток Беца), расположенных в коре прецентральной извилины (V слой), направляются к двигательным ядрам черепных нервов и серому веществу спинного мозга. Здесь происходит синаптическое переключение и далее сигнал направляется к скелетным мышцам. В зависимости от направления и расположения волокон пирамидный путь подразделяют на три части. Это корково-ядерный путь, идущий к ядрам черепных нервов, латеральный и передний корково-спинномозговые пути, идущие к промежуточным ядрам и передним рогам спинного мозга .

Рефераты:  реферат найти Спортивные сооружения для зимних видов спорта

Корково-ядерный путь
проходит через колено внутренней капсулы и основание ножки мозга. В среднем мозге, мосту, продолговатом мозге волокна корково-ядерного пути переходят на противоположную сторону к двигательным ядрам черепных нервов, где заканчиваются синапсами на их нейронах.Аксоны нейронов двигательных ядер выходят из мозга в составе соответствующих черепных нервов и направляются к скелетным мышцам головы и шеи.
Латеральный
и передний корковоспинномозговые пути проходят через переднюю часть задней ножки внутренней капсулы, затем через основание ножки мозга и моста переходят в продолговатый мозг, где образуют пирамиды. На границе продолговатого мозга со спинным мозгом основная часть волокон корково-спинномозгового пути переходит на противоположную сторону, продолжается в боковой канатик спинного мозга (латеральный корково-спинномозговой путь) и постепенно заканчивается синапсами на двигательных и промежуточных клетках серого вещества. Другие волокна коркового спинномозгового пути, не переходящие на противоположную сторону на границе продолговатого мозга со спинным, спускаются вниз в составе переднего канатика спинного мозга. Этот пучок волокон образует передний корково-спинномозговой путь. Его волокна посегментно переходят через белую спайку и заканчиваются синапсами на нейронах противоположной стороны спинного мозга. Аксоны двигательных клеток передних рогов выходят из спинного мозга в составе передних корешков и иннервируют скелетные мышцы.
Экстрапирамидные
проводящие пути являются филогенетически более старыми, чем пирамидные. Они имеют множество связей как со стволом мозга, так и с корой большого мозга, которая контролирует и управляет экстрапирамидной сис- темой. Экстрапирамидные проводящие пути берут начало в разных отделах коры полушарий большого мозга и ствола мозга, а заканчиваются они на клетках двигательных ядер мозгового ствола и серого вещества спинного мозга. Влияние коры большого мозга на экстрапирамидную систему и экстрапирамидные проводящие пути осуществляется через мозжечок, красные ядра, ретикулярную формацию, вестибулярные ядра. Одной из функций красного ядра является поддержание мышечного тонуса, необходимого для непроизвольного сохранения позы, а также сгибание конечностей при локомоции. От красных ядер нервные импульсы направляются в двигательные ядра спинного мозга по красноядерно-спинномозговому (руброспинальному) проводящему пути.
В осуществлении координации движений тела человека при нарушении равновесия важную роль играет преддверноспинномозговоп (вестибулоспинальный) путь, который связывает вестибулярные ядра с передними рогами спинного мозга. Кроме того, вестибулярные ядра связаны посредством заднего продольного пучка с двигательными ядрами III, IV, VI и других пар черепных нервов. Такая связь обеспечивает корректирующие движения глазных яблок при движениях головы и шеи. Аксоны первых нейронов преддверно-спинно-мозгового пути опускаются в составе переднего канатика спинного мозга. Вестибулярные ядра и активность связанных с ними путей находятся под контролем древней части мозжечка (ядро шатра).
Кора большого мозга осуществляет управление функциями мозжечка, участвующего в координации движений, через мост по кортико-мосто-мозжечковому пути, переключение сигналов идет через собственные ядра моста. Таким образом, проводящие пути головного и спинного мозга устанавливают связи между афферентными и эфферентными (эффекторными) центрами, замыкают сложные нервные дуги в мозге человека.
Одни из них замыкаются на филогенетически более старых ядрах, лежащих в мозговом стволе и обеспечивающих функции, обладающие определенным автоматизмом, без участия сознания, хотя и под контролем полушарий большого мозга. Другие замыкаются с участием высших отделов коры большого мозга и обеспечивают произвольные действия органов и систем органов. Проводящие пути объединяют организм в функциональную целостность, обеспечивают согласованную деятельность всех его компонентов.

Список литературы Анатомия человека Р.П. Самусев Ю.М. Селин М. : Медицина 1995.Физиология человека /под ред. Г. И Косицкого М. : Медицина 1985.

Элементарная теория радуги – физика – referat-zona.ru

Но что мной зримая вселена?

И что перед тобою я?

Ничто! Но ты во мне сияешь

Величеством твоих доброт.

Во мне себя преображаешь,

Как Солнце в малой капле вод.

Г. Р. Державин

Сколько бывает радуг?

Вряд ли найдется человек, который не любовался бы радугой. Появившись на небосводе, она невольно приковывает внимание. А сколько легенд и сказаний связано с радугой у разных народов! В русских летописях ра­дуга называется « райской дугой » или сокращенно « райдугой ». В Древней Греции радугу олицетворяла богиня Ирида («Ирида» и означает « радуга »). По представлениям древних греков, радуга соединяет небо и землю, и Ирида была посредницей между богами и людьми. В русский язык вошли и другие слова с тем же греческим корнем: ирис — радужная оболочка глаза, иризация, иридий.

Радуга всегда связывается с Дождем. Она может появиться и перед дождем, и во время дождя, и после него, в зависимости от того, как пере­мещается облако, дающее ливневые осадки. Об этом говорят и народные поговорки: „Радуга-дуга! Перебей дождя!”, „Радуга-дуга! Принеси нам дождь!”

Рефераты:  Мухаджирство: история переселения северокавказцев в Османскую империю

Первая попытка объяснить радугу как естественное явление природы была сделана в 1611 г. архиепископом Антонио Доминисом. Его объяснение радуги противоречило библейскому, поэтому он был отлучен от церкви и приговорен к смертной казни. Антонио Доминис умер в тюрьме, не дождавшись казни, но его тело и рукописи были сожжены.

Обычно наблюдаемая радуга — это цветная дуга угловым радиусом 42°, видимая на фоне завесы ливневого дождя или полос падения дождя, часто не достигающих поверхности Земли. Радуга видна в стороне небо­свода, противоположной Солнцу, и обязательно при Солнце, не закрытом облаками. Такие условия чаще всего создаются при выпадении летних ливневых дождей, называемых в народе « грибными » дождями. Центром радуги является точка, диаметрально противоположная Солнцу,— анти­солярная точка. Внешняя дуга радуги красная, за нею идет оранжевая, желтая, зеленая дуги и т. д., кончая внутренней фиолетовой.

Сколько радуг можно увидеть одновременно?

Неискушенный наблюдатель видит обычно одну радугу, изредка две. Причем вторая радуга, концентрическая с первой, имеет угловой радиус около 50° и располагается над первой. Вторая радуга более широкая, блеклая, расположение цветов в ней обратное первой радуге: внешняя дуга у нее фиолетовая, а внутренняя красная.

Самое удивительное, что большинство людей, наблюдавших радугу много раз, не видят, а точнее не замечают дополнительных дуг в виде нежнейших цветных арок внутри первой и снаружи второй радуг (т. е. со стороны фиолетовых краев радуг). Эти цветные дуги (их обычно три-четыре) неправильно названы дополнительными — в действительности они такие же основные (или главные), как первая и вторая радуги.

 Эти дуги не образуют целого полукруга или большой дуги и видны только в самых верхних частях радуг, т. е. вблизи « вершин », или « макушек », основных радуг, когда же последние переходят в вертикальное положение (или близкое к нему), дополнительные дуги пропадают. Именно в этих дугах, а не в основных, сосредоточено наибольшее богатство чистых цветовых тонов, которое и породило выражение „все цвета радуги”.

Радуги можно увидеть около водопадов, фонтанов, на фоне завесы капель, разбрызгиваемых поливальной машиной или полевой поливальной установкой. Можно самому создать завесу капель из ручного пульверизатора и, встав спиною к Солнцу, увидеть радугу, созданную собственными руками. У фонтанов и водопадов случалось видеть, кроме описанных двух основных и трех-четырех дополнительных дуг к каждой основной, еще одну или две радуги вокруг Солнца.

Как возникает радуга?

Откуда берется удивительный красочный свет, исходящий от дуг радуги? Все радуги — это солнечный свет, разложенный на компоненты и перемещенный по небосводу таким образом, что он кажется исходящим от части небосвода, противоположной той, где находится Солнце.

Научное объяснение радуги впервые дал Репе Декарт в 1637 г. Декарт объяснил радугу на основании законов преломления и отражения солнечного света в каплях выпадающего дождя. В то время еще не была открыта дисперсия — разложение белого света в спектр при преломлении. Поэтому радуга Декарта была белой.

Спустя 30 лет Исаак Ньютон, открывший дисперсию белого света при преломлении, дополнил теорию Декарта, объяснив, как преломляются цветные лучи в каплях дождя. По образному выражению американского ученого А. Фразера, сделавшего ряд интересных исследований радуги уже в наше время, „Декарт повесил радугу в нужном месте на небосводе, а Ньютон расцветил ее всеми красками спектра”.

Несмотря на то что теория радуги Декарта — Ньютона создана более 300 лет назад, она правильно объясняет основные особенности радуги: положение главных дуг, их угловые размеры, расположение цветов в радугах различных порядков.

Для объяснения радуги мы пока и ограничимся теорией Декарта — Ньютона, которая подкупает своей удивительной наглядностью и простотой.

Лучи радуги

Итак, пусть параллельный пучок солнечных лучей падает на каплю (рис. 1). Ввиду того что поверхность капли кривая, у разных лучей будут разные углы падения. Они изменяются от 0 до 90°. Проследим путь луча, упавшего в точку А, его угол паления обозначим i . Преломившись под углом преломления r , луч входит в каплю и доходит до точки В. Часть энергии луча, преломившись, выходит из капли, часть, испытав внутреннее отражение в точке 5, идет внутри капли до точки С. Здесь снова часть энергии луча, преломившись, выходит из капли, а некоторая часть, испытав второе внутреннее отражение, доходит до точки О и т. д. В .принципе луч может испытывать любое число (и), внутренних отражений, а преломлений у каждого луча два — при входе и при выходе из капли.

Неограниченные возможности головного мозга. Реферат. Биология. 2013-12-13

Рис. 1. Ход светового луча в капле при образовании первой и второй радуг.

Обозначим Dk угол отклонения любого луча после прохождения им капли. Тогда из рис.1 очевидно, что

Dk = 2( i – r) k (p – 2r), (1)

здесь k — число внутренних отражений луча.

Параллельный пучок лучей, падающий на каплю, по выходе из капли оказывается сильно расходящимся (рис. 2). Концентрация лучей, а значит, и их интенсивность тем больше, чем ближе они лежат к лучу, испытавшему минимальное отклонение. Путь минимально отклоненного луча обозначен на рисунке пунктиром. Только минимально отклоненный луч и самые близкие к нему лучи обладают достаточной интенсивностью, чтобы образовать радугу. Поэтому этот луч и называют лучом радуги.

Неограниченные возможности головного мозга. Реферат. Биология. 2013-12-13

Рис.2. Преломление пучка световых лучей в капле.

Минимальное отклонение луча, испытавшего одно внутреннее отражение (k = 1), по теории Декарта равно:

D1 = p 2( i – 2r).
(2)

Каждый белый луч, преломляясь в капле, разлагается в спектр, и из капли выходит пучок расходящихся цветных лучей. Поскольку у красных лучей показатель преломления меньше, чем у других цветных лучей, то они и будут испытывать минимальное отклонение по сравнению с остальными. Минимальные отклонения крайних цветных лучей видимого спектра красных и фиолетовых оказываются следующими: D1k= 137°30′ и D = 139°20′. Остальные цветные лучи займут промежуточные между ними поло­жения.

Солнечные лучи, прошедшие через каплю с одним, внутренним отражением, оказываются исходящими от точек неба, расположенных ближе к антисолярной точке, чем к Солнцу. Поэтому, чтобы увидеть эти лучи, надо встать спиной к Солнцу. Расстояния их от антисолярной точки будут равны соответственно: 180° — 137°30′ = 42°30′ для красных и 180° — 139°20′ = 40°40′ для фиолетовых.

Почему радуга круглая? Дело в том, что более или менее сферическая капля, освещенная параллельным пучком лучей солнечного света, может образовать радугу только в виде круга. Поясним это.

Описанный путь в капле с минимальным отклонением по выходе из нее проделывает не только тот луч, за которым мы следили, но также и многие другие лучи, упавшие на каплю под таким же углом. Все эти лучи и образуют радугу, поэтому их называют лучами радуги.

Сколько же лучей радуги в пучке света, падающего на каплю? Их много, по существу, они образуют целый цилиндр. Геометрическое место точек их падения на каплю это целая окружность.

В результате прохождения через каплю и преломления в ней цилиндр белых лучей преобразуется в серию цветных воронок, вставленных одна в другую, с центром в антисолярной точке, с открытыми раструбами, обращенными к наблюдателю. Наружная воронка красная, в нее вставлена оранжевая, желтая, далее идет зеленая и т. д., кончая внутренней фиолетовой.

Таким образом, каждая отдельная капля образует целую радугу! Радуга – „как Солнце в малой капле вод”. Так образно и предельно лаконично выразил суть радуги Г. Р. Державин.

Конечно, радуга от одной капли слабая, и в природе ее невозможно увидеть отдельно, так как капель в завесе дождя много. В лаборатории же удавалось наблюдать не одну, а несколько радуг, образованных преломлением света в одной подвешенной капельке воды или масла при освещении ее лучом лазера. Подробнее об этом эксперименте рассказано ниже.

Радуга, которую мы видим на небосводе, мозаична — она образована мириадами капель. Каждая капля создает серию вложенных одна о другую цветных воронок (или конусов). Но от отдельной капли в радугу попадает только один цветной луч. Глаз наблюдателя является общей точкой, в которой пересекаются цветные лучи от множества капель. Например, все красные лучи, вышедшие из различных капель, но под одним и тем же углом и попавшие в глаз наблюдателю, образуют красную дугу радуги, также и все оранжевые и другие цветные лучи. Поэтому радуга круглая.

Два человека, стоящие рядом, видят каждый свою радугу. Если вы идете по дороге и смотрите на радугу, она перемещается вместе с вами, будучи в каждый момент образована преломлением солнечных лучей в новых и новых каплях. Далее, капли дождя падают. Место упавшей капли занимает другая и успевает послать свои цветные лучи в радугу, за ней следующая и т. д. Пока идет дождь, мы видим радугу.

Мы пояснили, как образуется первая радуга, наиболее часто наблюдаемая, с ярким внешним красным краем и внутренним фиолетовым.

Найдем ширину первой радуги D1, т. е. угловое расстояние от ее красной дуги до фиолетовой с учетом поправки на угловую ширину Солнца, диаметр которого равен 32′: D1= 42°30′ – 40°40′ 32′ = 2°22′.

Вторая радуга и следующие

Если повторить предыдущие рассуждения относительно лучей, испытавших в капле два внутренних отражения, получим следующие минимальные углы отклонения крайних цветных лучей. Для красных D2k= 230°54′ и для фиолетовых D = 233°56′. Такие лучи так же, как и испытавшие одно отра­жение внутри капли, лежат ближе к антисолярной точке, чем к Солнцу. Угловые расстояния их от антисолярной точки будут равны: 230°54′ — 180° = 50°34′ для красных; 233°46′ — 180° = 53°56′ для фиолетовых. Эти лучи образуют радугу, концентрическую с первой, но с обратным рас­положением цветов. В этой радуге внутренняя дуга красная.

Угловая ширина второй радуги D2 = 53°56′ — 50″34′ = 3°54′.

Вторая радуга значительно шире первой и выглядит более слабой.

Расчеты для радуг следующих порядков ( k = 3, 4, 5, 6, 7, 8 и т. д.) пока­зали, что 3-я и 4-я радуги располагаются вокруг Солнца, 5-я и 6-я — вокруг антисолярной точки, 7-я и 8-я — снова вокруг Солнца и т. д.

В таблице приведены углы отклонения лучей красного цвета, угловые радиусы соответствующих радуг и положение их на небосводе согласно расчетам К. С. Шифрина по формулам дифракции.

k

Dk

Угловой радиус радугиПоложение на небосводе
1137°29¢42°31¢Вокруг антисолярной точки
2129°54¢50°06¢
342°53¢42°53¢Вокруг Солнца
442°18¢42°18¢
5126°31¢53°29¢Вокруг антисолярной точки
6149°46¢30°14¢
766°22¢66°22¢Вокруг Солнца
816°51¢16°51¢

Возникает вопрос: почему мы не видим всех радуг? Это происходит потому, что из всей энергии луча, упавшего на каплю в точку А, примерно 7% отражается, 88% – проходит сквозь каплю и только 5% испытывает одно внутреннее отражение в точке В и идет дальше к точке С. Здесь снова происходит аналогичное разделение энергии между лучами, выходящими из капли и дважды отраженными от внутренней поверхности капли. Поэтому на радуги всех порядков расходуется менее 5% энергии падающего пучка, при этом „львиная” доля — около 4% — идет на образование первой радуги. Обычно мы и можем видеть только первую радугу и изредка вторую. На остальные радуги остается слишком мало энергии, менее 1%, поэтому ра­дуги высоких порядков не видны.

Рефераты:  Патриарх Никон и церковная реформа. Реферат. Культурология. 2009-01-12

Почему радуга бывает разной?

По теории Декарта — Ньютона радуга должна быть всегда одинаковой — „застывшей”. Эти ученые правильно объяснили положение радуги на небо­своде, размер дуг, расположение цветов в основных радугах любого порядка. В частности, по теории ширине дуг радуг всегда было „положено” быть одной и той же. Однако радуга содержала еще много секретов. Внимательный наблюдатель видел иногда серию красочных дополнительных дуг, которым совсем „не было места” в теории Декарта — Ньютона. Иногда радуга имела яркие насыщенные тона, а порой была совсем блеклой, почти белой. Радуга бывала и широкой и узкой — и всё это „не укладывалось” в теорию Декарта — Ньютона.

Объяснение всего комплекса радуги, со всеми неразгаданными, ее осо­бенностями, было сделано позже, когда была создана общая теория рас­сеяния (дифракции) световых лучей в атмосфере. В частности, стало ясно, что дополнительные дуги возникают вследствие интерференции лучей, ле­жавших но обе стороны от наименее отклоненного луча (луча радуги) и в непосредственной близости от него.

Размер и форма капель и их влияние на вид радуги

Расчеты по формулам дифракционной теории, выполненные для капель разного размера, показали, что весь вид радуги — ширина дуг, наличие, расположение и яркость отдельных цветовых тонов, положение дополнитель­ных дуг очень сильно зависят от размера капель дождя. Приведем основные характеристики внешнего вида радуги для капель разных радиусов.

Радиус капель 0,5—1 мм. Наружный край основной радуги яркий, темно-красный, за ним идет светло-красный и далее чередуются все цвета радуги. Особенно яркими кажутся фиолетовый и зеленый. Дополнительных дуг много (до пяти), в них чередуются фиолетово-розовые тона с зелеными. Дополнительные дуги непосредственно примыкают к основным радугам.

Радиус капель 0,25 мм. Красный кран радуги стал слабее. Остальные цвета видны по-прежнему. Несколько фиолетово-розовых дополнительных дуг сменяются зелеными.

Радиус капель 0,10—0,15 мм. Красного цвета в основной радуге больше нет. Наружный край радуги оранжевый. В остальном радуга хорошо развита. Дополнительные дуги становятся все более желтыми. Между ними и между основной радугой и первой дополнительной появились просветы.

Радиус капель 0,04—0,05 мм. Радуга стала заметно шире и бледнее, Наружный край ее бледно-желтый. Самым ярким является фиолетовый цвет. Первая дополнительная дуга отделена от основной радуги довольно широким промежутком, цвет ее белесый, чуть зеленоватый и беловато-фиолетовый.

Радиус капель 0,03 мм. Основная радуга еще более широкая с очень слабо окрашенным чуть желтоватым краем, содержит отдельные белые полосы.

Радиус капель 0,025 мм и менее. Радуга стала совсем белой. Она при­мерно в два раза шире обычной радуги и имеет вид блестящей белой полосы. Внутри нее могут быть дополнительные окрашенные дуги, сначала бледно-голубые или зеленые, затем белесовато-красные.

Таким образом, по виду радуги можно приближенно оценить размеры капель дождя, образовавших эту радугу. В целом, чем крупнее капли дождя, тем радуга получается уже и ярче, особенно характерным для крупных капель является наличие насыщенного красного цвета в основной радуге. Многочисленные дополнительные дуги также имеют яркие тона и непо­средственно, без промежутков, примыкают к основным радугам. Чем капли мельче, тем радуга становится более широкой и блеклой с оранжевым или желтым краем. Дополнительные дуги дальше отстоят и друг от друга и от основных радуг.

Вид радуги зависит и от формы капель. При падении в воздухе крупные капли сплющиваются, теряют свою сферичность. Вертикальное сечение таких капель приближается к элипсу. Расчеты показали, что минимальное отклонение красных лучей при прохождении через сплющенные капли радиусом 0,5 мм составляет 140°. Поэтому угловой размер красной дуги будет не 42°, а только 40°. Для более крупных капель, например радиу­сом 1,0 мм, минимальное отклонение красных лучей составит 149°, а крас­ная дуга радуги будет иметь размер 31°, вместо 42°. Таким образом, чем сильнее сплющивание капель, тем меньше радиус образуемой ими радуги.

Разгадан „секрет” добавочных дуг!

А. Фразер, рассмотрев одновременно влияние размера и формы капель на вид радуги, сумел раскрыть «секрет» возникновения добавочных дуг. Как только что было сказано, уменьшение размера преобладающих капель и сплющивание крупных действуют в противоположных направлениях. Что же пересилит? Когда и какое влияние будет преобладающим?

Наглядной иллюстрацией взаимодействия обоих факторов и совмест­ного их влияния на вид радуги являются рис. 3 а и б, составленные А. Фразером, на основании расчетов: На этих рисунках показано распреде­ление интенсивности света в основной радуге и дополнительных дугах в зависимости от размера капель.

Сложная волнообразная поверхность на переднем плане (рис.3 а) со­ставлена из многих индивидуальных кривых. Каждая кривая дает распре­деление и интенсивность света в радуге от одной капли. Каждая пятая кривая проведена потолще, цифры справа означают радиус капли, соответствующей кривой, в миллиметрах. Все кривые начинаются слева с очень малой интенсивности (вне радуг), затем быстро поднимаются до макси­мума между 138° и 139° (первая радуга). Следующий гребень справа — первая дополнительная дуга, за ней вторая дополнительная дуга и т. д. Расстояние между дугами, как видно из рисунка, быстро уменьшается при увеличении радиуса капель. Это действие первого фактора. Радуга ста­новится узкой при увеличении размера капель.

Верхняя кривая S — это результирующая сложения вкладов капель всех размеров. Она характеризует распределение интенсивности света в оконча­тельной радуге, которую мы видим.

Неограниченные возможности головного мозга. Реферат. Биология. 2013-12-13

137 138 139 140  141 142 143 144

Угловое расстояние от Солнца

Неограниченные возможности головного мозга. Реферат. Биология. 2013-12-13

137 138 139 140 141  142 143 144

Угловое расстояние от Солнца

Рис. 3. Распределение интенсивности света в основной радуге и дополни­тельных дугах в зависимости от размера капель.

а — без учёта сплющивания капель; б — с учетом сплющивания капель. S — суммарная кривая.

На рис.3 б показаны те же кривые, но теперь учтено влияние сплю­щивания капель, тем более сильное, чем крупнее капли. Индивидуальные кривые для крупных сплющенных капель смещены в сторону больших минимальных углов отклонения от Солнца (или, что то же, в сторону уменьшения радиусов радуг), и в результате вся волнообразная поверхность оказалась изогнутой вправо (индивидуальные максимумы ушли вправо). Это привело к тому, что на результирующей суммарной кривой появи­лись, помимо основной радуги, еще дополнительные дуги, на угловых рас­стояниях от Солнца: первая —140,5°, вторая —141,3°, третья — 142,4°, чет­вертая—142,5°.

Дополнительные дуги видны только вблизи вершины основной радуги, так как они образованы только вертикальными или близкими к ним лучами, прошедшими через эллиптические сечения капель.

Расчетами показано, но это можно проследить и по рис.3 б, что допол­нительные, дуги создаются в основном каплями размером от 0,2 до 0,3 мм. Более крупные и более мелкие капли дают максимумы, накладывающиеся друг на друга и слишком далеко отстоящие от основной радуги (они уходят вправо). Радуги капель диаметром 0,2—0,3 мм находятся в преимущест­венном положении, поскольку их максимумы никуда не сместились. Таким образом, можно сделать вывод, что дополнительные дуги видны, если в лив­невом дожде присутствуют в значительном, количестве капли радиусом 0,25 мм и мало более крупных капель, смазывающих картину. Поэтому дополнительные дуги чаще видны и наиболее красочны не в очень интенсив­ных летних ливневых дождях. Они появляются также на фоне завесы из мельчайших капель, образующихся при разбрызгивании воды в поливальных установках.

Можно ли видеть целый круг радуги? С поверхности Земли мы можем наблюдать радугу в лучшем случае в виде половины круга, когда Солнце находится на горизонте. При поднятии Солнца радуга уходит под горизонт. Первую радугу можно, видеть при высотах Солнца более 42°, а вторую — более 50°. С самолета, а еще лучше с вертолета (больше обзор) можно наблюдать радугу в виде целого круга! Описание такой круговой радуги (ее и радугой, т. е. дугой, уже неудобно называть!) было помещено в жур­нале „Природа”. Ее видели пассажиры самолета, летевшего в районе Новосибирска на высоте 1000 м.

Поляризация света радуг. Свет радуги характеризуется необычийно высокой степенью поляризации. В первой радуге она достигает 90%, во второй—около 80%. В этом легко убедиться, если посмотреть на радугу через поляризационную призму Николя. При небольших углах поворота призмы радуга полностью пропадает.

Радуга без дождя?

Бывают ли радуги без дождя или без полос падения дождя? Оказывается, бывают — в лаборатории. Искусственные радуги создавались в результате преломления света в одной подвешенной капельке дистиллированной воды, воды с сиропом или прозрачного масла. Размеры капель варьировали от 1,5 до 4,5 мм. Тяжелые капли вытягивались под действием силы тяжести, и их сечение в вертикальной плоскости представляло собою эллипс. При освещении капельки лучом гелий-неонового лазера (с длиной волны 0,6328 мкм) появлялись не только первая и вторая радуги, но и необычайно яркие третья и четвертая, с центром вокруг источника света (в данном случае лазера). Иногда удавалось получать даже пятую и шестую радуги. Эти радуги, как первая и вторая, снопа были в стороне, противоположной источнику.

Итак, одна капелька создала столько радуг! Правда, эти радуги не были радужными. Все они были одноцветными, красными, так как образо­ваны не белым источником света, а монохроматическим красным лучом.

Туманная радуга

В природе встречаются белые радуги, о которых говорилось выше. Они появляются при освещении солнечными лучами слабого тумана, состоя­щего из капелек радиусом 0,025 мм или менее. Их называют туманными радугами. Кроме основной радуги в виде блестящей белой дуги с едва заметным желтоватым краем наблюдаются иногда окрашенные дополни­тельные дуги: очень слабая голубая или зеленая дуга, а затем белесовато-красная.

Аналогичного вида белую радугу можно увидеть, когда луч прожектора, расположенного сзади вас, освещает интенсивную дымку или слабый туман перед вами. Даже уличный фонарь может создать, хотя и очень слабую, белую радугу, видимую на темном фоне ночного неба.

Лунные радуги

Аналогично солнечным могут возникнуть и лунные радуги. Они более слабые и появляются при полной Луне. Лунные радуги явление более редкое, чем солнечные. Для их возникновения необходимо сочетание двух условий: полная Луна, не закрытая облаками, и выпадение ливневого дождя или полос его падения (не достигающих Земли). Ливневые дожди, обусловленные дневными конвективными движениями воздуха, значительно реже выпадают ночью.

Лунные радуги могут наблюдаться в любом месте земного шара, где осуществятся перечисленные два условия.

Дневные, солнечные радуги, даже образованные самими мелкими кап­лями дождя или тумана, довольно белесые, светлые, и все же наружный край их хотя бы слабо, но окрашен в оранжевый или желтый цвет. Радуги, образованные лунными лучами, совсем не оправдывают своего названия, так как они не радужные и выглядят как светлые, совершенно белые дуги.

Отсутствие красного цвета у лунных радуг даже при крупных каплях ливневого дождя объясняется низким уровнем освещения ночью, при ко­тором полностью теряется чувствительность глаза к лучам красного цвета. Остальные цветные лучи радуги также теряют в значительной степени свой цветовой тон из-за ахроматичности (неокрашенности) ночного зрения человека.

Министерство общего и профессионального образования Российской Федерации

Дальневосточный Государственный Технический Университет Кафедра физики Реферат

Тема: Элементарная теория радуги.

Выполнил:

Проверил: Гайдай Л.И.

Владивосток 2001г.

Список литературы

1.   Суорд, Клиффорд «Необыкновенная физика обыкновенных явлений»

2.   Тарасов Л.В. «Физика в природе», М.- 1989.

3.   Зверева В.Л. «Солнечный свет в атмосфере», М.-1988.

Оцените статью
Реферат Зона
Добавить комментарий