Автоколебания. Генератор незатухающих электромагнитных колебаний — online presentation

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation Реферат

Аналогия между механическими и электромагнитными автоколебаниями

Электромагни

Механическая

тная


Элементы

автоколебател

автоколебател

автоколебател ьная система

ьная система

ьной системы (маятниковые

(генератор на

часы)

транзисторе)

источник

энергии

поднятый груз

клапан


Аналогия

между анкер

колебательная

механическими

маятник

система

электромагнитными

через ходовое


Обратная связь

автоколебаниямиколесо

батарея

гальванических

элементов

транзистор

колебательный

контур

индуктивная –

через катушку

Автоколебания. генератор незатухающих колебаний (на транзисторе)

Свободные электромагнитные колебания в реальном колебательном контуре всегда затухающие. Для того чтобы они были незатухающими, нужно создать устройство, с помощью которого компенсировались бы потери энергии при каждом полном колебании в контуре. Широко применимы так называемые автоколебания — незатухающие колебания, поддерживаемые в системе за счет постоянного внешнего источника энергии, причем сама система управляет им, обеспечивая согласованность поступления энергии определенными порциями в нужный момент времени.

Любая автоколебательная система состоит из следующих четырех частей (рис. 1): 1) колебательная система; 2) источник энергии, за счет которого компенсируются потери; 3) клапан — некоторый элемент, регулирующий поступление энергии в колебательную систему определенными порциями в нужный момент; 4) обратная связь — управление работой клапана за счет процессов в самой колебательной системе.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Рис. 1

Генератор на транзисторе — пример автоколебательной системы. На рисунке 2 приведена упрощенная схема такого генератора, в котором роль «клапана» играет транзистор. Колебательный контур подключен к источнику тока последовательно с транзистором. Эмиттерный переход транзистора через катушку Lсв индуктивно связан с колебательным контуром. Эту катушку называют катушкой обратной связи.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Рис. 2

1. Источник энергии, за счет которого поддерживаются незатухающие колебания (в генераторе на транзисторе это источник постоянного напряжения).
2. Колебательная система — та часть автоколебательной системы, непосредственно в которой происходят колебания (в генераторе на транзисторе это колебательный контур).
3. Устройство, регулирующее поступление энергии от источника в колебательную систему, — клапан (в рассмотренном генераторе роль клапана выполняет транзистор).
4. Устройство, обеспечивающее обратную связь, с помощью которой колебательная система управляет клапаном (в генераторе на транзисторе предусмотрена индуктивная связь катушки контура с катушкой в цепи эмиттер — база).

В генераторе на транзисторе вырабатываются незатухающие колебания различных частот. Без таких систем не было бы ни современной радиосвязи, ни телевидения, ни ЭВМ.

Билет № 10

1.Статика изучает условия равновесия тел.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentationВиды равновесия

Устойчивое равновесие. Если тело вывести из устойчивого равновесия, то появляется сила, возвращающая его в положение рав­новесия. Устойчивому равновесию соответствует минимальное значение потенциальной энергии

Неустойчивое равновесие. Если тело вывес­ти из неустойчивого равновесия, то возни­кает сила, удаляющая тело от положения равновесия. Неустойчивому равновесию соответствует максимальное значение потенциальной энергии .

Безразличное равновесие. При выведении тела из состояния безразличного равновесия дополнительных сил не возникает. Пример: шар на плоскости.

Момент силы. Правило моментов

Момент силы М (Н· м) – физическая величина, модуль которой равен произведению модуля силы на плечо силы

М = F· d.

Плечо силы d (M)– кратчайшее расстояние между осью вращения и линией действия силы. Т.е. из точки вращения опускается перпендикуляр на линию действия силы. При необходимости линию продлить.

Знаки моментов. Если сила вызывает вращение тела по ча­совой стрелке, то такой момент считают положительным:

Если сила вызывает вращение тела против часовой стрелки, в таком случае момент отрицательный.

Тело находится в равновесии при выполнении сразу двух условий.

1. Сумма сил, действующих на тело, равна нулю.

2. Правило моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

Или: сумма моментов сил, вызывающих вращение тела по часовой стрелке, равна сумме моментов сил, вызывающих вращение тела против часовой стрелки:

Простые механизмы – приспособления, служащие для преобразования силы. К ним относятся ворот, наклонная плоскость, рычаг, клин и блоки.
«Золотое правило механики». При использовании простых механизмов мы выигрываем в силе, но проигрываем в расстоянии (или наоборот — например, катапульта). Выигрыша в работе простые механизмы не дают, т.к. это противоречило бы закону сохранения энергии.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Механический вечный двигатель, производящий энергию из ничего, невозможен.

Центр тяжести тела – точка, относительно которой момент сил тяжести всех точек тела равен нулю. В случае однородного поля силы тяжести центр тяжести совпадает с центром масс).

2. Переменный ток. Сопротивления в цепи переменного тока.

Вынужденные электромагнитные колебания в электрической цепи представляют собой переменный электрический ток.

§ Переменный электрический ток — это ток, сила и направление которого периодически меняются.

Наибольшее распространение получил гармонический переменный ток, представляющий собой вынужденные электрические колебания, происходящие в цепях под действием напряжения, гармонически меняющегося с частотой ω по закону синуса или косинуса:

u=Um⋅sinωt или u=Um⋅cosωt ,

где u – мгновенное значение напряжения, Um – амплитуда напряжения, ω – циклическая частота колебаний. Если напряжение меняется с частотой ω, то и сила тока в цепи будет меняться с той же частотой, но колебания силы тока не обязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае

i=Im⋅sin(ωt φ) ,

где φ – разность (сдвиг) фаз между колебаниями силы тока и напряжения. Принцип получения переменного тока основан на явлении электромагнитной индукции — индуцировании электродвижущей силы в прямоугольном контуре (проволочной рамке), находящейся в однородном вращающемся магнитном поле.

Переменный ток обеспечивает работу электрических двигателей в станках на заводах и фабриках, приводит в действие осветительные приборы в наших квартирах и на улице, холодильники и пылесосы, отопительные приборы и т.п. Частота колебаний напряжения в сети равна 50 Гц. Такую же частоту колебаний имеет и сила переменного тока. Это означает, что на протяжении 1 с ток 50 раз поменяет свое направление. Частота 50 Гц принята для промышленного тока во многих странах мира. В США частота промышленного тока 60 Гц.

Рекомендуемые страницы:

§

В переменном электрическом токе элементы цепи обладают 2 видами сопротивлений: активным и реактивным.

При каждом виде сопротивления энергия электрического тока преобразуется в другие виды энергий.

Сопротивление называется активным, если энергия электрического тока преобразуется в виде теплоты.

Сопротивление называется реактивным, если энергия тока преобразуется на образование электромагнитного поля.

Известно 2 вида реактивного сопротивления.

Индуктивное сопротивление — это сопротивление, возникающее в результате явления самоиндукции.

Индуктивное сопротивление

Где ω — циклическая частота тока, Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

L — индуктивность.

Емкостное сопротивление — это сопротивление, которое оказывает переменному току конденсатор.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

§ Генератором переменного тока называется электротехническое устройство, предназначенное для преобразования механической энергии в энергию переменного тока.

Основными частями генератора являются (рис. 1):

§ индуктор — электромагнит или постоянный магнит, который создает магнитное поле;

§ якорь — обмотка, в которой индуцируется переменная ЭДС;

§ коллектор со щетками — устройство, посредством которого снимается с вращающихся частей или подается по ним ток.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Рис. 1

Неподвижная часть генератора называется статором, а подвижная — ротором. В зависимости от конструкции генератора его якорь может быть как ротором, так и статором. При получении переменных токов большой мощности якорь обычно делают неподвижным, чтобы упростить схему передачи тока в промышленную сеть.

Мощные генераторы вырабатывают напряжение 15-20 кВ и обладают КПД 97-98 %.

Принцип действия

Принцип действия генератора переменного тока основан на явлении электромагнитной индукции.

Пусть проводящая рамка площадью S вращается с угловой скоростью ω вокруг оси, расположенной в ее плоскости перпендикулярно однородному магнитному полю индукцией B⃗ (см. рис. 1).

При равномерном вращении рамки угол α между направлениями вектора индукции магнитного поля B⃗ и нормали к плоскости рамки n⃗ меняется со временем по линейному закону. Если в момент времени t = 0 угол α = 0 (см. рис. 1), то

α=ωt=2πνt,

где ω — угловая скорость вращения рамки, ν — частота ее вращения.

В этом случае магнитный поток, пронизывающий рамку будет изменяться следующим образом

Φ(t)=BS⋅cosα=BS⋅cosωt.

Тогда согласно закону Фарадея индуцируется ЭДС индукции

e=−Φ′(t)=BSω⋅sinωt=Em⋅sinωt.

Подчеркнем, что ток в цепи проходит в одном направлении в течение полуоборота рамки, а затем меняет направление на противоположное, которое также остается неизменным в течение следующего полуоборота.

Действующие значения силы тока и напряжения

§ Действующим (эффективным) значением силы переменного тока называется сила такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.

Обозначается буквой I.

§ Действующим (эффективным) значением напряжения переменного тока называется напряжение такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.

Обозначается буквой U.

В контактной сети электрифицированных ж. д. используется постоянный электрический ток напряжением 3 кВили переменный однофазный ток промышленной частоты напряжением 25 кВ.
При питании переменным током усложняется конструкция подвижного состава, но значительно упрощаются устройства энергоснабжения электрических железных дорог, увеличивается расстояние между тяговыми подстанциями при тех же потерях до 50 км (20—25 км при постоянном токе), снижается стоимость строительства контактной сети до 10%, в 2,5 раза меньше расход меди.

Билет № 11

1 Механическая работа. Мощность.

Если действующая на тело сила F вызывает его перемещение s, то действие этой силы характеризуется величиной, называемой механической работой (или, сокращенно, просто работой).

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Механической работой А называют скалярную величину, равную произведению модуля силы F, действующей на тело, и модуля перемещения s, совершаемого телом в направлении действия этой силы, т. е.

А=Fs. (3.9)

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation В случае, описываемом формулой (3.9), направление перемещения тела совпадает с направлением силы. Однако чаще встречаются случаи, когда сила и перемещение составляют между собой угол, не равный нулю или α. (рис. 30)

А=Fsсоsα. (3.10)

Таким образом, в общем случае механическая работа равна произведению модуля силы и модуля перемещения на косинус угла между направлениями силы и перемещения. Работа силы, направленной вдоль перемещения тела, положительна, а силы, направленной против перемещения тела, — отрицательна. По формулам (3.9) и (3.10) вычисляют работу постоянной силы. Единицу механической работы устанавливают из формулы (3.9). В СИ за единицу работы принята работа силы 1 Н при перемещении точки ее приложения на 1 м. Эта единица имеет наименование джоуль (Дж):
1 Дж = 1Н·1м.

Мощность-это величина, характеризующая быстроту совершения работы. Мощностью N называют величину, равную отношению работы А к промежутку времени t, в течение которого эта работа была совершена:

N=A/t (3.11)

Из формулы (3.11) следует, что в СИ единицей мощности является 1 Дж/с (джоуль в секунду). Эту единицу иначе называют ватт (Вт), 1 Вт= 1 Дж/с.

Связь между мощностью и скоростью при равномерном движении найдем, подставив (3.10) в (3.11):

N=Fvcosα.

(Эта формула справедлива и для переменного движения, если под N понимать мгновенную мощность, а под V — мгновенную скорость). Если направление силы совпадает с направлением перемещения, то cosα=1 и N=F·v. Из последней формулы следует, что

F=N/v и v=N/F.

Из этих формул видно, что при постоянной мощности двигателя скорость движения обратно пропорциональна силе тяги и наоборот. На этом основан принцип действия коробки скоростей (коробки перемены передач) различных транспортных средств.

Рекомендуемые страницы:

§

Если тело может совершить механическую работу, то оно обладает механической энергией Е (Дж). Либо, если внешняя сила совершает работу, воздействуя на тело, его энергия изменяется.

Сучествует два вида механической энергии: кинетическая и потенциальная.

Кинетическая энергия – энергия движущихся тел:

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

где v (м/с) – модуль скорости, m – масса тела.

Потенциальная энергия – энергия взаимодействующих тел.

Примеры потенциальной энергии в механике.

Тело поднято над землей: Е = mgh

где h – высота, определяемая от нулевого уровня (или от нижней точки траектории). Форма траектории не важна, имеет значения только начальная и конечная высота.

Упруго деформированное тело. Деформация, определяемая от положения недеформированного тела (пружины, шнура и т.п.).

Потенциальная энергия упругих тел:Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation , где k – жёсткость пружины; х – её деформация.

Энергия может передаваться от одних тел к другим, а также превращаться из одного вида в другой.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation — Полная механическая энергия.

Закон сохранения энергии: в замкнутой системе тел полная энергия не изменяется при любых взаимодействиях внутри этой системы тел.

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

2.Трансформатор. Принцип действия. Устройство. Коэффициент трансформации. Передача электроэнергии.
Преобразование переменного тока, при котором напряжение увеличивается или уменьшается в несколько раз практически без Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation потери мощности, осуществляется с помощью трансформаторов.

Трансформатор— устройство, применяемое для повышения или понижения напряжения переменного тока.

Впервые трансформаторы были использованы в 1878г. русским ученым П.Н.Яблочковым для питания изобретенных им «электрических свечей»- нового в то время источника света.

Простейший трансформатор представляет собой две катушки. Намотанные на общий стальной сердечник. Одна катушка подключается к источнику переменного напряжения . Эта катушка называется первичной обмоткой), а с другой катушки ( называемой вторичной обмоткой) снимают переменное напряжение для дальнейшей его передачи.

Переменный ток в первичной обмотке создает переменное магнитное поле. Благодаря стальному сердечнику вторичную обмотку, намотанную на тот же сердечник, пронизывает практически такое же переменное поле, что и первичную.

Поскольку все витки пронизываются одним и тем же переменным магнитным потоком, вследствие явления электромагнитной индукции в каждом витке генерируется одно и то же напряжение. Поэтому отношение напряжений 𝑈1 и 𝑈2 первичной и вторичной обмотках равно отношению числа витков в них:

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Изменение напряжения трансформатором характеризует коэффициент трансформации

Коэффициент трансформациивеличина, равная отношению напряжений в первичной и вторичной обмотках трансформатора:

K= Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Повышающий трансформатор- трансформатор, увеличивающий напряжение ( Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation У повышающего трансформатора число витков Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation во вторичной обмотке должно быть больше числа витков Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation в первичной обмотке, т.е. к<1.

Понижающий трансформатор – трансформатор, уменьшающий напряжение ( Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation У понижающего трансформатора число витков во вторичной обмотке должно быть меньше числа витков в первичной обмотке, т. е к>1.

Передача электрической энергии от электростанций до больших городов или промышленных центров на расстояния тысяч километров является сложной научно-технической проблемой. Для уменьшения потерь на нагревания проводов необходимо уменьшить силу тока в линии передачи, и, следовательно, увеличить напряжение. Обычно линии электропередачи строятся в расчете на напряжение 400–500 кВ, при этом в линиях используется трехфазный ток частотой 50 Гц.

Билет № 12

Закон Паскаля. Закон Архимеда. Условия плавания тел.

Формулировка закона Паскаля

Давление, производимое на жидкость или газ, передается в любую точку одинаково во всех направлениях. Это утверждение объясняется подвижностью частиц жидкостей и газов во всех направлениях.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

На основе закона Паскаля гидростатики работают различные гидравлические устройства: тормозные системы, прессы и др.

Закон Архимеда — это закон статики жидкостей и газов, согласно которому на тело, погруженное в жидкость (или газ), действует выталкивающая сила (сила Архимеда), равная весу вытесненной этим телом жидкости (или газа).

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

FA = ρgV,
где ρплотность жидкости (газа),
gускорение свободного падения,
Vобъем погруженного тела (или объем той части тела, которую погрузили в жидкость (или газ)).

Архимедова сила направлена всегда противоположно силе тяжести. Она равна нулю, если погруженное в жидкость тело плотно, всем основанием прижато ко дну.
Следует помнить, что в состоянии невесомости закон Архимеда не работает.

Рекомендуемые страницы:

§

Fт — сила тяжести, FА — сила Архимеда.

Fт = FА — тело плавает в жидкости или газе,
Fт > FА — тело тонет,
Fт < FА — тело всплывает до тех пор, пока не начнет плавать.

ρt — плотность тела, ρs — плотность среды, в которую погрузили тело.

ρt = ρs — тело плавает в жидкости или газе,
ρt > ρs — тело тонет,
ρt < ρs — тело всплывает до тех пор, пока не начнет плавать.

Электромагнитное поле. Электромагнитные волны и их свойства. Открытие электромагнитных волн.

Английский ученый Джеймс Максвелл на основании изучения экспериментальных работ Фарадея по электричеству высказал гипотезу о существовании в природе особых волн, способных распространяться в вакууме. Эти волны Максвелл назвал электромагнитными волнами.

По представлениям Максвелла: при любом изменении электрического поля возникает вихревое магнитное поле и, наоборот, при любом изменении магнитного поля возникает вихревое электрическое поле. Однажды начавшийся процесс взаимного порождения магнитного и электрического молей должен непрерывно продолжаться и захватывать все новые и новые области в окружающем пространстве . Процесс взаимопорождения электрических и магнитных полей происходит во взаимно перпендикулярных плоскостях. Переменное электрическое поле порождает вихревое магнитное поле, переменное магнитное поле порождает вихревое электрическое поле.

Электрические и магнитные поля могут существовать не только в веществе, но и в вакууме. Поэтому должно быть возможным распространение электромагнитных волн в вакууме.

Условием возникновения электромагнитных волн является ускоренное движение электрических зарядов. Так, изменение магнитного поля происходит при изменении тока в проводнике, а изменение тока происходит при изменении скорости зарядов, т. е. при движении их с ускорением. Скорость распространения электромагнитных волн в вакууме, по расчетам Максвелла, должна быть приблизительно равна 300 000 км/с.

Впервые опытным путем получил электромагнитные волны немецкий физик Генрих Герц, использовав при этом высокочастотный искровой разрядник (вибратор Герца). Герц опытным путем определил также скорость электромагнитных волн. Она совпала с теоретическим определением скорости волн Максвеллом. Простейшие электромагнитные волны — это волны, в которых электрическое и магнитное поля совершают синхронные гармонические колебания.

Конечно, электромагнитные волны обладают всеми основными свойствами волн. Они подчиняются закону отражения волн: угол падения равен углу отражения. При переходе из одной среды в другую преломляются и подчиняются закону преломления волн: отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред, равная отношению скорости электромагнитных волн в первой среде к спорости электромагнитных волн во второй среде, и называется показателем преломления второй среды относительно первой.

Явление дифракции электромагнитных волн, т. е. отклонение направления их распространения от прямолинейного, наблюдается у края преграды или при прохождении через отверстие. Электромагнитные полны способны к интерференции. Интерференция — это способность когерентных волн к наложению, в результате чего волны в одних местах друг друга усиливают, а в других местах — гасят. (Когерентные волны — это водны, одинаковые по частоте и фазе колебания.) Электромагнитные волны обладают дисперсией, т. е. когда показатель преломления среды для электромагнитных волн зависит от их частоты. Опыты с пропусканием электромагнитных волн через систему из двух решеток показывают, что эти волны являются поперечными.

При распространении электромагнитной волны векторы напряженности Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation и магнитной индукции Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation перпендикулярны направлению распространения волны и взаимно перпендикулярны между собой (рис. 31).Т.о. электромагнитная волна является поперечной.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Билет № 13

Механические колебания: основные характеристики гармонических колебаний; уравнение гармонических колебаний; свободные и вынужденные колебания; резонанс. Превращения энергии при гармонических колебаниях.

Колебание— движение, при котором тело (материальная точка) поочередно смещается то в одну, то в другую сторону. Условия, необходимые для наличия колебаний:

1)наличие возвращающей силы, возникшей в системе в результате выведения ее из положения равновесия;

2)отсутствие трения в системе (или очень мало);

3)система должна обладать инертностью.

Силу, под действием которой происходит колебательный процесс, называют возвращающей силой.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Колебания делятся также на периодические и непериодические

Простейшим видом периодических колебаний являются гармонические колебания, происходящие по закону синуса или косинуса.

Гармоническая колебательная система (система тел, совершающих колебания) обычно имеет одно положение, в котором может пребывать сколь угодно долго – положение равновесия О.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Отклонения от положения равновесия называют смещением, и обозначается Х, а наибольшее смещение (точки В или С) называется амплитудой колебания и обозначается А.

Периодические колебания совершаются циклично. Движение в течение одного цикла (когда тело, пройдя все промежуточные положения, возвращается в исходное) называется полным колебанием (О-С-О-В-О). Время одного полного колебания называется периодом колебания (обозначается Т).

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Число колебаний в единицу времени называется частотой колебаний. Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Число колебаний за 2π единиц времени называется циклической (круговой) частотой и обозначается ω:

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

График гармонических колебаний:

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Математическая запись гармонических колебаний:

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

где Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentationфаза колебания (физическая величина, определяющая положение колебательной системы в данный момент времени),

φ – начальная фаза колебания.

При гармонических колебаниях скорость и ускорение тела также могут изменятся по закону синуса или косинуса.

Простейшими колебательными системами являются:

а) математический маятник – материальная точка, подвешенная на невесомой нерастяжимой нити и совершающая колебания под действием силы тяжести.

Период колебания определяется уравнением:

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation.

Период Т зависит лишь от длины маятника и местоположения (удалённости от центра Земли или другого небесного тела), которое определяется величиной ускорения свободного падения ;

б) пружинный маятник – материальная точка, закреплённая на абсолютно упругой пружине.

Период колебания определяется уравнением:

,Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

где m – масса материальной точки,

к – коэффициент упругости пружины.

Характерной особенностью колебательного движения является периодическое превращение кинетической энергии тела в потенциальную и обратно.

2. Принципы радиосвязи: амплитудная модуляция и детектирование. Развитие средств связи. Радиолокация. Радиосвязь на ж/д транспорте.

Ток высокой частоты создает в антенне электромагнитную волну, которая распространяется в пространстве. Электромагнитная волна, достигнув, приемную антенну

создает в ней ток такой же частоты, которую излучил передатчик.

Генератор незатухающих колебаний, изобретенный в 1913году, позволил осуществлять надежную и качественную радиотелефонную связь на большие расстояния.

Радиотелефонная связь.

В микрофоне колебания воздуха в звуковой волне превращаются в электрические колебания такой же формы.

К сожалению, такие колебания нельзя передавать на большие расстояния. Электромагнитные волны низкой (звуковой ) частоты не излучаются.

Модуляция.

Чтобы передавать звуковые волны, необходимо высокочастотные колебания менять с помощью электрических колебаний звуковой частоты. Изменение высокочастотных колебаний, выработанных генератором, в соответствии с электрическими колебаниями звуковой частоты называется модуляцией. Изменять можно амплитуду высокочастотных колебаний – это амплитудная модуляция.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

На рисунке мы видим три графика: а) график несущей частоты – колебания высокой частоты;

б) график электрических колебаний низкой частоты – модулирующие колебания; в) график колебаний модулированных по амплитуде – радиоволна.

Ни телевидение, ни телеграф, ни телефон, ни радио не работают, если высокочастотную волну не модулировать. Это необходимый процесс, который происходит в высокочастотной колебательной системе.

Иногда применяют частотную модуляцию, при которой происходит изменение частоты колебаний в соответствии с управляющим сигналом.

Детектирование.

Процесс выделения из модулированных колебаний высокой частоты низкочастотных колебаний называетсядетектированием.

Модулированный сигнал не вызывает колебания звуковой частоты громкоговорителя или мембраны телефона. Выделение низкочастотного колебания из модулированного сигнала осуществляется устройством с односторонней проводимостью – детектором. Это может быть полупроводниковый диод или вакуумный диод.

Если последовательно с источником модулированных колебаний и резистором включить полупроводниковый диод, то ток будет течь в одном направлении. Этот ток будет пульсирующим.

С помощью фильтра (конденсатора с резистором) пульсации тока сглаживаются. Когда на диод попадает ток, то часть его идет на нагрузку, а часть на конденсатор, заряжая его. Разделение тока уменьшает пульсации тока , который идет через резистор. Когда диод не пропускает ток, конденсатор разряжается через нагрузку. Новый импульс подзаряжает конденсатор. Через резистор течет ток звуковой частоты, который подается на мембрану громкоговорителя.

Мембрана передает колебания диффузору, а он и мы слышим речь, музыку.

Простейший радиоприемник.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Основные части: антенна, колебательный контур, связанный с антенной, контур цепи, в который входят детектор, конденсатор, телефон.

Билет № 14

1. Механические волны. Распространение колебаний в упругой среде. Поперечные и продольные волны .Характеристики волны. Звуковые волны. Громкость и высота звука.

ВОЛНЫ

Волны могут быть разной природы: механические, электромагнитные и т.д.
Мы будем рассматривать механические волны.

МЕХАНИЧЕСКИЕ ВОЛНЫ

Волна- это колебания, распространяющиеся в пространстве в течение времени.
Механические волны могут распространяться только в какой- нибудь среде (веществе): в газе, в жидкости, в твердом теле. В вакууме механическая волна возникнуть не может.
Источником волн являются колеблющиеся тела, которые создают в окружающем пространстве деформацию среды.

Для возникновения волны нужна деформация (наличие Fупр) среды.
Для распространения волны нужна упругая среда.
Бегущая волна — волна, где происходит перенос энергии без переноса вещества.
Бегущая упругая волна- волна, где есть перенос энергии и возникает F упругости в среде распространения.
Среди механических волн мы будем рассматривать бегущие упругие волны.

Механические волны делятся на:
а) продольные

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

— колебания среды происходят вдоль направления распространения волн,
при этом возникают области сжатия и разрежения среды.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

— возникают в любой среде (жидкости, в газах, в тв. телах).

Рефераты:  Казахский агротехнический университет имени Сакена Сейфуллина | Портал для абитуриентов и школьников

б) поперечные

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

-колебания среды происходят перпендикулярно направлению их распространения,
при этом происходит сдвиг слоев среды.
— возникают только в твердых телах.

При распространении волны происходит перенос энергии без переноса вещества.

Скорость, с которой распространяется возмущение в упругой среде, называют скоростью волны. Она определяется упругими свойствами среды. Расстояние, на которое распространяется волна за время, равное периоду колебаний в ней (Т), называется длиной волны λ (ламбда).

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Звуковые волны — это продольные механические волны, вызывающие слуховые ощущения. Диапазон слышимых частот от 16 до 20000 Гц. Скорость звука в различных средах разная, в твердых телах и жидкостях она значительно больше, чем в воздухе. Громкость звука зависит от амплитуды колебаний, а высота звука определяется частотой колебаний.

На границе сред с упругими свойствами звуковая волна отражается. С явлением отражения звука связано эхо. Это явление состоит в том, что звук от источника доходит до какого-то препятствия, отражается от него и возвращается к месту, где он возник, через промежуток времени не менее 1/15 с. Через такой интервал времени человеческое ухо способно воспринимать раздельно следующие один за другим звуки.

Рекомендуемые страницы:

§

Свет — это электромагнитные волны в интервале частот Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation , воспринимаемых человеческим глазом, т. е. длин волн в интервале 380 — 770 нм.

Свету присущи все свойства электромагнитных волн: отражение, преломление, интерференция, дифракция, поляризация. Свет может оказывать давление на вещество, поглощаться средой, вызывать явление фотоэффекта. Имеет конечную скорость распространения в вакууме 300 000 км/с, а в среде скорость убывает.

Интерференция волн– это явление наложения когерентных волн.
Свойственно волнам любой природы (механическим, электромагнитным и т.д.
Когерентные волны — это волны, испускаемые источниками, имеющими одинаковую частоту и постоянную разность фаз.
При наложении когерентных волн в какой-либо точке пространства амплитуда колебаний этой точки будет зависеть от разности расстояний от источников до рассматриваемой точки. Эта разность расстояний называется разностью хода.

При наложении когерентных волн возможны два предельных случая:
Условие максимума:

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
Разность хода волн равна целому числу длин волн ( иначе четному числу длин полуволн).
Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation ,где
Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
В этом случае волны в рассматриваемой точке приходят с одинаковыми фазами и усиливают друг друга – амплитуда колебаний этой точки максимальна и равна удвоенной амплитуде.
Условие минимума:

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
Разность хода волн равна нечетному числу длин полуволн.
Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation ,где
Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
Волны приходят в рассматриваемую точку в противофазе и гасят друг друга.
Амплитуда колебаний данной точки равна нулю.
В результате наложения когерентных волн (интерференции волн) образуется интерференционная картина.
Интерференция света.
1802г. Английский физик Томас Юнг поставил опыт, в котором наблюдалась интерференция света.
Опыт Томаса Юнга
Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
От одного источника через щель А формировались два пучка света ( через щели В и С), далее пучки света падали на экран Э. Так как воны от щелей В и С были когерентными, на экране можно было наблюдать интерференционную картину: чередование светлых и темных полос.
Светлые полосы – волны усиливали друг друга (соблюдалось условие максимума).
Темные полосы – волны складывались в противофазе и гасили друг друга (условие минимума).
Если в опыте Юнга использовался источник монохроматического света ( одной длины волны), то на экране наблюдались только светлые и темные полосы данного цвета.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Если источник давал белый свет (т.е. сложный по своему составу), то на экране в области светлых полос наблюдались радужные полосы. Радужность объяснялась тем, что условия максимумов и минимумов зависят от длин волн.
Интерференция в тонких пленках
Явление интерференции можно наблюдать, например:
— радужные разводы на поверхности жидкости при разливе нефти, керосина, в мыльных пузырях
Толщина пленки должна быть больше длины световой волны.
Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
При попадании монохроматического света (самый простой случай) на тонкую пленку часть света отражается от наружной поверхности пленки, другая часть света, пройдя через пленку, отражается от внутренней поверхности.
При попадании в глаз на сетчатке происходит наложение (сложение) двух когерентных волн и возникает интерференционная (полосатая) картина, как результат усиления и ослабления волн. В случае белого света интерференционная картина будет радужной.
При проведении своего опыта Юнгу впервые удалось измерить длину световой волны.
В результате опыта Юнг доказал, что свет обладает волновыми свойствами.
Применение интерференции:
— интерферометры – приборы для измерения длины световой волны
— просветление оптики ( в оптических приборах при прохождении света через объектив потери света составляют до 50%) – все стеклянные детали покрывают тонкой пленкой с показателем преломления чуть меньше, чем у стекла; перераспределяются интерференционные максимумы и минимумы и потери света уменьшаются.

Билет 15

1. Основные положения молекулярно – кинетической теории. Модель идеального газа. Абсолютная температура. Температура как мера средней кинетической энергии поступательного движения молекул. Использование свойств газов в технике.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Молекулярно-кинетическая теория (МКТ) – это учение, которое объясняет тепловые явления в макроскопических телах и внутренние свойства этих тел движением и взаимодействием атомов, молекул и ионов, из которых состоят тела. В основе МКТ строения вещества лежат три положения:

  1. Вещество состоит из частиц – молекул, атомов и ионов. В состав этих частиц входят более мелкие элементарные частицы. Молекула – наименьшая устойчивая частица данного вещества. Молекула обладает основными химическими свойствами вещества. Молекула является пределом деления вещества, то есть самой маленькой частью вещества, которая способна сохранять свойства этого вещества. Атом – это наименьшая частица данного химического элемента.
  2. Частицы, из которых состоит вещество, находятся в непрерывном хаотическом (беспорядочном) движении.
  3. Частицы вещества взаимодействуют друг с другом – притягиваются и отталкиваются.

Эти основные положения подтверждаются экспериментально и теоретически.

ИДЕА́ЛЬНЫЙ ГАЗ — теоретическая модель газа; в которой пренебрегают размерами частиц газа, не учитывают силы взаимодействия между частицами газа, предполагая, что средняя кинетическая энергия частиц много больше энергии их взаимодействия, и считают, что столкновения частиц газа между собой и со стенками сосуда абсолютно упругие.

Абсолютный нуль температуры. Наименьшим возможным значением температуры T является значение T=0, если давление p газа или объем V равны нулю.
Предельную температуру, при которой давление идеального газа обращается в нуль при фиксированном объеме или при которой объем идеального газа стремится к нулю при неизменном давлении, называют абсолютным нулем температуры. Это самая низкая температура в природе, та «наибольшая или последняя степень холода», существование которой предсказывал Ломоносов.
Абсолютная шкала температур. Английский ученый У. Кельвин (1824-1907) ввел абсолютную шкалу температур. Нулевая температура по абсолютной шкале (ее называют также шкалой Кельвина) соответствует абсолютному нулю, а каждая единица температуры по этой шкале равна градусу по шкале Цельсия.
Единица абсолютной температуры в СИ называется Кельвином (обозначается буквой К: ).

Один кельвин и один градус шкалы Цельсия совпадают. Поэтому любое значение абсолютной температуры T будет на 273 градуса выше соответствующей температуры t по Цельсию

Т= t 273, К

Но изменение абсолютной температуры Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation равно изменению температуры по шкале Цельсия Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation : Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation .
На рисунке 9.3 для сравнения изображены абсолютная шкала и шкала Цельсия. Абсолютному нулю соответствует температура t=-273°С.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Отметим важнейший факт: абсолютный нуль температуры недостижим!
Абсолютная температура есть мера средней кинетической энергии движения молекул.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Средняя кинетическая энергия хаотичного поступательного движения молекул газа пропорциональна абсолютной температуре. Чем выше температура, тем быстрее движутся молекулы.

Газы в технике, применяются главным образом в качестве топлива; сырья для химической промышленности: химических агентов при сварке, газовой химико-термической обработке металлов, создании инертной или специальной атмосферы, в некоторых биохимических процессах и др.; теплоносителей; рабочего тела для выполнения механической работы (огнестрельное оружие, реактивные двигатели и снаряды, газовые турбины, парогазовые установки, пневмотранспорт и др.): физической среды для газового разряда (в газоразрядных трубках и др. приборах). В технике используется свыше 30 различных газов.

2. Дифракция света. Явления, наблюдаемые при пропускании света через отверстия малых размеров. Дифракционная решётка.

Дифракция света– это отклонение световых лучей от прямолинейного распространения при прохождении сквозь узкие щели, малые отверстия или при огибании малых препятствий.
Явление дифракции света доказывает, что свет обладает волновыми свойствами.
Для наблюдения дифракции можно:
— пропустить свет от источника через очень малое отверстие или расположить экран на большом расстоянии от отверстия. Тогда на экране наблюдается сложная картина из светлых и темных концентрических колец.
— или направить свет на тонкую проволоку, тогда на экране будут наблюдаться светлые и темные полосы, а в случае белого света – радужная полоса.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation — наблюдение дифракции света на малом отверстии.
Объяснение картины на экране:
Французский физик О. Френель объяснил наличие полос на экране тем, что световые волны, приходящие из разных точек в одну точку на экране, интерферируют между собой.
Принцип Гюйгенса – Френеля
Все вторичные источники, расположенные на поверхности фронта волны, когерентны между собой.
Амплитуда и фаза волны в любой точке пространства – это результат интерференции волн, излучаемых вторичными источниками.
Принцип Гюйгенса-Френеля дает объяснение явлению дифракции:
1. вторичные волны, исходя из точек одного и того же волнового фронта (волновой фронт – это множество точек, до которых дошло колебание в данный момент времени) , когерентны, т.к. все точки фронта колеблются с одной и той же частотой и в одной и той же фазе;
2. вторичные волны, являясь когерентными, интерферируют.
Явление дифракции накладывает ограничения на применение законов геометрической оптики:
Закон прямолинейного распространения света, законы отражения и преломления света выполняются достаточно точно только , если размеры препятствий много больше длины световой волны.
Дифракция накладывает предел на разрешающую способность оптических приборов:
— в микроскопе при наблюдении очень мелких предметов изображение получается размытым
— в телескопе при наблюдении звезд вместо изображения точки получаем систему светлых и темных полос.
Дифракционная решетка — это оптический прибор для измерения длины световой волны.
Дифракционная решетка представляет собой совокупность большого числа очень узких щелей, разделенных непрозрачными промежутками.
Если на решетку падает монохроматическая волна . то щели (вторичные источники) создают когерентные волны. За решеткой ставится собирающая линза, далее – экран. В результате интерференции света от различных щелей решетки на экране наблюдается система максимумов и минимумов.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
Разность хода между волнами от краев соседних щелей равна длине отрезка АС. Если на этом отрезке укладывается целое число длин волн, то волны от всех щелей будут усиливать друг друга. При использовании белого света все максимумы (кроме центрального) имеют радужную окраску.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
Итак, условие максимума:

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
где k – порядок (или номер) дифракционного спектра
Чем больше штрихов нанесено на решетке, тем дальше друг от друга находятся дифракционные спектры и тем меньше ширина каждой линии на экране, поэтому максимумы видны в виде раздельных линий, т.е. разрешающая сила решетки увеличивается.
Точность измерения длины волны тем больше, чем больше штрихов приходится на единицу длины решетки.
Дифракционная картина от тонкой проволоки

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Билет 16.

Рекомендуемые страницы:

§

Состояние данной массы газа полностью определено, если известны его давление, температура и объем. Эти величины называют параметрами состояния газа. Уравнение, связывающее параметры состояния, называют уравнением состояния.
Для произвольной массы газа состояние газа описывается уравнением Менделеева—Клапейрона: pV = mRT/M, где р — давление, V — объем, m — масса, М — молярная масса, R — универсальная газовая постоянная.

Уравнение, устанавливающее связь между давлением, объемом и температурой газов, было получено французским физиком Бенуа Клапейроном (1799—1864). В форме (26.7) его впервые применил великий русский ученый Дмитрий Иванович Менделеев (1834—1907), поэтому уравнение состояния газа называется уравнением Менделеева — Клапейрона.

Уравнение Менделеева—Клапейрона показывает, что возможно одновременное изменение трех параметров, характеризующих состояние идеального газа. Однако многие процессы в газах, происходящие в природе и осуществляемые в технике, можно рассматривать приближенно как процессы, в которых изменяются лишь два параметра. Особую роль в физике и технике играют три процесса: изотермический, изохорный и изобарный.
Изопроцессом называют процесс, происходящий с данной массой газа при одном постоянном параметре — температуре, давлении или объеме. Из уравнения состояния как частные случаи получаются законы для изопроцессов.
Изотермическим называют процесс, протекающий при постоянной температуре. Т = const. Он описывается законом Бойля—Мариотта: pV = const. Для данной массы газа произведение давления на объем есть величина постоянная.
Изохорным называют процесс, протекающий при постоянном объеме. Для него справедлив закон Шарля: при V = const, p/T = const.. Для данной массы газа отношения давления к температуре есть величина постоянная.
Изобарным называют процесс, протекающий при постоянном давлении. Уравнение этого процесса имеет вид V/T = const при р = const и называется законом Гей-Люссака:для данной массы газа отношения объема к температуре есть величина постоянная.
Все процессы можно изобразить графически (рис. 15)

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

2. Фотоэффект и его законы. Уравнение Эйнштейна для фотоэффекта и постоянная Планка. Применение фотоэффекта в технике.

В 1900 г. немецкий физик Макс Планк высказал гипотезу: свет излучается и поглощается отдельными порциями — квантами (или фотонами). Энергия каждого фотона определяется формулой Е = hv, где h — постоянная Планка, равная Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation , v — частота света. Гипотеза Планка объяснила многие явления: в частности, явление фотоэффекта, открытого в 1887 г. немецким ученым Генрихом Герцем и изученного экспериментально русским ученым А. Г. Столетовым. Фотоэффект — это явление испускания электронов веществом под действием света.

В результате исследований были установлены три закона фотоэффекта.
1. Сила тока насыщения прямо пропорциональна интенсивности светового излучения, падающего на поверхность тела.
2. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от его интенсивности.
3. Если частота света меньше некоторой определенной для данного вещества минимальной частоты, то фотоэффекта не происходит.

Зависимость фототока от напряжения показана на рисунке 51.
Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
Теорию фотоэффекта создал немецкий ученый А. Эйнштейн в 1905 г. В основе теории Эйнштейна лежит понятие работы выхода электронов из металла и понятие о квантовом излучении света. По теории Эйнштейна фотоэффект имеет следующее объяснение: поглощая квант света, электрон приобретает энергию. При вылете из металла энергия каждого электрона уменьшается на определенную величину, которую называют работой выхода (Авых). Работа выхода — это работа, которую необходимо затратить, чтобы удалить электрон из металла. Максимальная энергия электронов после вылета (если нет других потерь) имеет вид: Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation . Это уравнение носит название уравнения Эйнштейна.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Приборы, в основе принципа действия которых лежит явление фотоэффекта, называют фотоэлементами. Простейшим таким прибором является вакуумный фотоэлемент. Недостатками такого фотоэлемента являются: слабый ток, малая чувствительность к длинноволновому излучению, сложность в изготовлении, невозможность использования в цепях переменного тока. Применяется в фотометрии для измерения силы света, яркости, освещенности, в кино для воспроизведения звука, в фототелеграфах и фототелефонах, в управлении производственными процессами.

Существуют полупроводниковые фотоэлементы, в которых под действием света происходит изменение концентрации носителей тока. Они используются при автоматическом управлении электрическими цепями (например, в турникетах метро), в цепях переменного тока, в качестве невозобновляемых источников тока в часах, микрокалькуляторах, проходят испытания первые солнечные автомобили, используются в солнечных батареях на искусственных спутниках Земли, межпланетных и орбитальных автоматических станциях.

С явлением фотоэффекта связаны фотохимические процессы, протекающие под действием света в фотографических материалах.
Билет 17.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

1. Модель строения жидкостей. Насыщенные и ненасыщенные пары. Зависимость давления насыщенного пара от температуры. Кипение. Влажность воздуха и её измерение. Точка росы.

Жидкость — вещество в состоянии, промежуточном между твердым и газообразным. Свойства жидкостей. Жидкости легко меняют свою форму, но сохраняют объем. В обычных условиях они принимают форму сосуда, в котором находятся.

Строение жидкостей. Свойства жидкостей объясняются тем, что промежутки между их молеку­лами малы: молекулы в жидкостях упакованы так плотно, что расстояние между каждыми двумя молекулами меньше размеров молекул. Молекула жидкости колеблется около положения временного равновесия, сталкиваясь с другими молекулами из ближайшего окружения. Время от времени ей удается совершить «прыжок», чтобы покинуть своих соседей из ближайшего окружения и продолжать совершать колебания уже среди других соседей. Время оседлой жизни молекулы воды, т. е. вре­мя колебания около одного положения равновесия при комнатной температуре, равно в среднем 10″11 с. Время одного колебания значительно меньше — 10~,2-10~13 с.

Поскольку расстояния между молекулами жидкости малы, то попытка уменьшить объем жид­кости приводит к деформации молекул, они начинают отталкиваться друг от друга, чем и объ­ясняется малая сжимаемость жидкости. Текучесть жидкости объясняется тем, что «прыжки» молекул из одного оседлого положения в другое происходят по всем направлениям с одинаковой частотой.

Насыщенный и ненасыщенный пар

Если сжимать газ в сосуде при постоянной температуре, то при некотором его объеме в сосуде появится жидкость и перестанет меняться давление, так как концентрация молекул над жидкостью станет постоянной за счет наступления динамического равновесия между жидкостью и паром. Пар, находящийся в динамическом равновесии со своей жидкостью, называется насыщенным.Под динамическим равновесием жидкости и пара понимают такое их состояние, когда число молекул, покидающих поверхность жидкости, равно в среднем числу молекул пара, возвращающихся за то же время в жидкость. Название «насыщенный» подчеркивает, что в данном объеме при данной температуре не может находиться большее количество пара.

Зависимость давления насыщенного пара от температуры.

Давление насыщенного пара зависит от температуры, но не зависит от объема.

Если в замкнутом сосуде нагревается жидкость, то с ростом температуры в пространстве над жидкостью растет концентрация молекул n и их средняя энергия Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation , поэтому давление растет нелинейно (рис. 3).

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Рис. 3

Когда вся жидкость в сосуде превратится в пар, то давление начнет расти прямо пропорционально температуре T, как давление идеального газа

Кипение. Температура кипения.

Кипение – это процесс интенсивного парообразования, происходящий как со свободной поверхности жидкости, так и по всему объему жидкости внутрь образующихся в ней пузырьков пара.

Кипение начинается при температуре, когда давление насыщенного пара внутри мельчайших пузырьков воздуха, которые всегда имеются внутри жидкости, начинает превышать давление вокруг этих пузырьков. Оно равно сумме атмосферного и гидростатического давлений. При этом пузырьки начинают расти. Из-за этого растет и архимедова (выталкивающая) сила, которая поднимает их вверх, где они лопаются, выбрасывая пар. При заданном давлении над кипящей жидкостью температура системы «жидкость–пар» постоянна для данного вещества и называется температурой кипения. Пока вся жидкость в сосуде не выкипит, температура жидкости постоянна.

Температура кипения повышается с ростом внешнего давления по закону изменения давления насыщенного пара от температуры.

Влажность воздуха —физическая величина, характеризующая содержание в воздухе водяного пара. Относительная влажность воздуха – это отношение парциального давления (или концентрации молекул) водяного пара, содержащегося в воздухе при данной температуре, к давлению (концентрации) насыщенного пара при той же температуре. Выражается:

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Относительная влажность воздуха показывает, насколько водяной пар в данных условиях близок к насыщению. Именно от этого зависит интенсивность испарения воды и потеря влаги живыми организмами. Для человека наиболее благоприятна относительная влажность, равная 40–60%.

Измерение влажности

Для измерения влажности используют зависимость различных параметров веществ от влажности воздуха. Такими параметрами могут служить, например, скорость испарения воды (психрометр, рис. 5), температура выпадения росы при локальном охлаждении воздуха (гигрометр, рис. 6), удлинение волоса при заданной нагрузке (волосяной гигрометр), сопротивление полупроводников (электронный измеритель влажности).

С помощью гигрометра измеряют точку росы – температуру, до которой необходимо охладить воздух, чтобы содержащийся в нем водяной пар, остывая, стал насыщенным. Начиная с этой температуры, охлаждение воздуха сопровождается появлением капелек росы на зеркальном сосуде, температуру которого понижают, прокачивая грушей воздух через легкокипящую жидкость (рис. 6).

С помощью психрометра фиксируют разницу температур двух термометров – сухого и влажного (рис. 5). По этой разнице и температуре сухого термометра устанавливают влажность воздуха по психрометрической таблице.

Рекомендуемые страницы:

§

На границе раздела двух различных сред, если эта граница раздела значительно превышает длину волны, происходит изменение направления распространения света: часть световой энергии возвращается в первую среду, то есть отражается, а часть проникает во вторую среду и при этом преломляется. Луч АО носит название падающий луч, а луч OD – отраженный луч (см. рис. 1.3). Взаимное расположение этих лучей определяют законы отражения и преломления света.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Рис. 1.3. Отражение и преломление света.

Угол α между падающим лучом и перпендикуляром к границе раздела, восстановленным к поверхности в точке падения луча, носит название угол падения.

Угол γ между отражённым лучом и тем же перпендикуляром, носит название угол отражения.

Закон отражения света:

1. Угол падения равен углу отражения.
α=γ
2. Падающий луч, луч отраженный и перпендикуляр, восстановленный в точке падения луча, лежат в одной плоскости.

Преломление света– это изменение направления распространения света при прохождении через границу раздела двух сред.

Закон преломления света.
1. Отношение синуса угла падения к синусу угла преломления для двух данных сред есть величина постоянная

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
где n – это относительный показатель преломления (иначе показатель преломления второй среды относительно первой)
2. Луч падающий и луч преломленный лежат в одной плоскости с перпендикуляром к поверхности раздела двух сред, восстановленным в точке падения луча.
Показатель преломления
Физический смысл относительного показателя преломления (иначе показателя преломления второй среды относительно первой):
он показывает во сколько раз скорость света в той среде, из которой луч выходит, больше скорости света в той среде, в которую он входит.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Кроме того, каждая среда, через которую проходит луч света, характеризуется абсолютным показателем преломления:

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
Абсолютный показатель преломления — это показатель преломления среды относительно вакуума.
Он равен отношению скорости света в вакууме к скорости света в данной среде.
Среда с меньшим абсолютным показателем преломления называется оптически менее плотной средой.
Для вакуума (воздуха) абсолютный показатель преломления среды = 1.
Таким образом, вакуум обладает наименьшей оптической плотностью.

Полное внутреннее отражение наблюдается при переходе света из среды оптически более плотной в оптически менее плотную среду.

Угол падения, при котором свет не преломляется в другую среду, а отражается и скользит вдоль раздела двух сред (т.е. угол преломления равен 90), называется предельным углом полного отражения.

Для стекла предельный угол полного отражения равен 42, для воды 49

  Линзой называют прозрачное для света тело, ограниченное двумя сферическими поверхностями.
  Линзу, у которой толщина пренебрежимо мала по сравнению с радиусами кривизны поверхностей, ограничивающих линзу, называют тонкой
  Основные понятия, используемые для описания хода лучей через линзы
Главная оптическая ось — прямая, проходящая через центры кривизны С 1 и С 2.Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
Оптический центр линзы — центральная точка О , через которую лучи походят, не изменяя направление.
  1. Фокус линзы ( F ) — точка на главной оптической оси, в которой пересекаются после преломления лучи (или их продолжения), падающие на линзу параллельно главной оптической оси. У любой линзы — два фокуса.
  1. Фокусное расстояние F — расстояние от оптического центра (точка О ) до фокуса. У собирающей линзы F > 0, у рассеивающей — F < 0.
  2. Фокальная плоскость — плоскость, проходящая через главный фокус линзы перпендикулярно оптической оси АА’ .
  3. Оптическая сила линзы D — величина, обратная фокусному расстоянию: D =1/F
    У собирающей линзы D > 0, у рассеивающей D < 0. Единица измерения — диоптрия.

1 дптр = 1м -1 .

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

 
 
  

Формула тонкой линзы. Если расстояние от предмета до линзы обозначить через d, а расстояние от линзы до изображения через f, то формулу тонкой линзы можно записать в виде:

Величину D, обратную фокусному расстоянию. называют оптической силой линзы. Единица измерения оптической силы является 1 диоптрия (дптр). Диоптрия – оптическая сила линзы с фокусным расстоянием 1 м:

Фокусным расстояниям линз принято приписывать определенные знаки: для собирающей линзы F > 0, для рассеивающей F < 0.

Величины d и f также подчиняются определенному правилу знаков:

  • d > 0 и f > 0 – для действительных предметов (то есть реальных источников света, а не продолжений лучей, сходящихся за линзой) и изображений;
  • d < 0 и f < 0 – для мнимых источников и изображений.

Применение геометрической оптики, т.е. применение линз и зеркал.

1. Фотоаппарат;

2. Фотоувеличитель;

3. Микроскоп;

4. Телескоп;

5. Проектор;

6. Волоконно-оптическая связь.

Разработка световодных систем и их опытная эксплуатация на железнодорожном транспорте началась в начале 80-х годов. В этих системах связи сигналы, несущие информацию, передают по оптическим световодам, которые представляют собой тонкие нити специальной конструкции, изготовленные из диэлектрического материала, прозрачного для применяемого излучения. Волоконные световоды из особо чистого кварцевого стекла называются оптическими волокнами и составляют основу оптических кабелей.

Билет 18.

Рекомендуемые страницы:

§

Твердое тело — агрегатное состояние вещества, характеризующееся постоянством формы и характером движения атомов, которые совершают малые колебания около положений равно­весия.

В отсутствие внешних воздействий твердое тело сохраняет свою форму и объем.

Это объясняется тем, что притяжение между атомами (или молекулами) у них больше, чем у жид­костей (и тем более газов). Оно достаточно, чтобы удержать атомы около положений равновесия.

Молекулы или атомы большинства твердых тел, таких, как лед, соль, алмаз, металлы, распо­ложены в определенном порядке. Такие твердые тела называют кристаллическими. Хотя части­цы этих тел и находятся в движении, движения эти представляют собой колебания около опре­деленных точек (положений равновесия). Частицы не могут уйти далеко от этих точек, поэтому твердое тело сохраняет свою форму и объем.

Кроме того, в отличие от жидкостей, точки положений равновесия атомов или ионов твердого тела, будучи соединенными, располагаются в вершинах правильной пространственной решетки, которая называется кристаллической.

Положения равновесия, относительно которых происходят тепловые колебания частиц, назы­ваются узлами кристаллической решетки.

Монокристалл — твердое тело, частицы которого образуют единую кристаллическую решетку (одиночный кристалл).

Одним из главных свойств монокристаллов, которым они отли­чаются от жидкостей и газов, является анизотропия их физических свойств. Под анизотропией понимают зависимость физических свойств от направления в кристалле. Анизотропными яв­ляются механические свойства (например, известно, что слюду легко расслоить в одном направле­нии и очень трудно — в перпендикулярном), электрические свойства (электропроводность многих кристаллов зависит от направления), оптические свойства (явление двойного лучепреломления, и дихроизма — анизотропии поглощения; так, например, монокристалл турмалина «окрашен» в разные цвета — зеленый и бурый, в зависимости от того, с какой стороны на него посмотреть).

Поликристалл — твердое тело, состоящее из беспорядочно ориентированных монокристал­лов. Поликристаллическими являются большинство твердых тел, с которыми мы имеем дело в быту — соль, сахар, различные металлические изделия. Беспорядочная ориентация сросшихся микрокристалликов, из которых они состоят, приводит к исчезновению анизотропии свойств.

Кристаллические тела имеют определенную температуру плавления.

Аморфные тела. Кроме кристаллических, к твердым телам относят также аморфные тела. Аморфный в переводе с греческого означает «бесформенный».

Аморфные тела— это твердые тела, для которых характерно неупорядоченное расположение частиц в пространстве.

В этих телах молекулы (или атомы) колеблются около хаотически расположенных точек и, по­добно молекулам жидкости, имеют определенное время оседлой жизни. Но, в отличие от жидкос­тей, время это у них очень велико.

К аморфным телам относятся стекло, янтарь, различные другие смолы, пластмассы. Хотя при комнатной температуре эти тела сохраняют свою форму, но при повышении температуры они постепенно размягчаются и начинают течь, как жидкости: у аморфных тел нет определенной температуры, плавления.

Этим они отличаются от кристаллических тел, которые при повышении температуры перехо­дят в жидкое состояние не постепенно, а скачком (при вполне определенной температуре — тем­пературе плавления).

Все аморфные тела изотропны, т. е. имеют одинаковые физические свойства по разным на­правлениям. При ударе они ведут себя как твердые тела — раскалываются, а при очень длитель­ном воздействии — текут.

В настоящее время есть много веществ в аморфном состоянии, полученных искусственным путем, например, аморфные и стеклообразные полупроводники, магнитные материалы и даже металлы.

2. Дисперсия света. Виды спектров. Спектрограф и спектроскоп. Спектральный анализ. Виды электромагнитных излучений и их применение на ж/д транспорте.

Луч белого света, проходя через трехгранную призму не только отклоняется, но и разлагается на составляющие цветные лучи.
Это явление установил Исаак Ньютон, проведя серию опытов.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Опыты Ньютона

Опыт по разложению белого света в спектр:

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

или

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Ньютон направил луч солнечного света через маленькое отверстие на стеклянную призму.
Попадая на призму, луч преломлялся и давал на противоположной стене удлиненное изображение с радужным чередованием цветов – спектр.
Ньютон на пути солнечного луча поставил красное стекло, за которым получил монохроматический свет (красный), далее призму и наблюдал на экране только красное пятно от луча света.
Сначала Ньютон направил солнечный луч на призму. Затем, собрав вышедшие из призмы цветные лучи с помощью собирающей линзы, Ньютон на белой стене получил вместо окрашенной полосы белое изображение отверстия.

Выводы Ньютона:

— призма не меняет свет, а только разлагает его на составляющие
— световые лучи, отличающиеся по цвету, отличаются по степени преломляемости; наиболее сильно преломляются фиолетовые лучи, менее сильно – красные.
— красный свет, который меньше преломляется, имеет наибольшую скорость, а фиолетовый — наименьшую, поэтому призма и разлагает свет.
Зависимость показателя преломления света от его цвета называется дисперсией.
Спектр белого света:

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
Выводы:
— призма разлагает свет
— белый свет является сложным (составным)
— фиолетовые лучи преломляются сильнее красных.
Цвет луча света определяется его частотой колебаний.
При переходе из одной среды в другую изменяются скорость света и длина волны, а частота, определяющая цвет остается постоянной.
Белый свет – это совокупность волн длинами от 380 до 760 нм.
Глаз воспринимает отраженные от предмета лучи определенной длины волны и таким образом воспринимает цвет предмета.

Спектры испускания
Совокупность частот (или длин волн), которые содержатся в излучении какого-либо вещества, называют спектром испускания. Они бывают трех видов.
Сплошной — это спектр, содержащий все длины волн определенного диапазона от красного с λ ≈ 7,6.10-7 м до фиолетового с λ ≈ 4.10-7 м. Сплошной спектр излучают нагретые твердые и жидкие вещества, газы, нагретые под большим давлением.
Линейчатый — это спектр, испускаемый газами, парами малой плотности в атомарном состоянии. Состоит из отдельных линий разного цвета (длины волны, частоты), имеющих разные расположения. Каждый атом излучает набор электромагнитных волн определенных частот. Поэтому каждый химический элемент имеет свой спектр
Полосатый —это спектр, который испускается газом в молекулярном состоянии.
Линейчатые и полосатые спектры можно получить путем нагрева вещества или пропускания электрического тока.
Спектры поглощения
Спектры поглощения получают, пропуская свет от источника. дающего сплошной спектр, через вещество, атомы которого на­ходятся в невозбужденном, состоянии.
Спектр поглощения — это совокупность частот, поглощаемых данным веществом.
Согласно закону Кирхгофа вещество поглощает те линии спектра, которые и испускает, являясь источником света.
Спектральный анализ
Исследование спектров испускания и поглощения позволяет установить качественный состав вещества. Количественное содержание элемента в соединении определяется путем измерения яркости спектральных линий. Метод определения качественного и количественного состава вещества по его спектру называется спектральным анализом. Зная длины волн, испускаемых различными парами, можно установить наличие тех или иных элементов в веществе.
Этот метод очень чувствителен. Отдельные линии в спектрах различных элементов могут совпадать, но в целом спектр каждого элемента является его индивидуальной характеристикой. Спектральный анализ сыграл большую роль в науке. С его помощью был изучен состав Солнца и звезд.
В спектре Солнца (1814) были открыты фраунгоферовы темные линии.
Солнце — раскаленный газовый шар (Т ≈ 6000 °С), испускающий сплошной спектр. Солнечные лучи проходят через атмосферу Солнца, где Т ≈ 2000— 3000 °С.
Корона поглощает из сплошного спектра определенные частоты, а мы на Земле принимаем солнечный спектр поглощения. По нему можно определить, какие элементы присутствуют в короне Солнца.
Он помог обнаружить все земные элементы, а также неизвестный элемент, который назвали гелий. Через 26 лет (1894) открыли гелий на Земле. Благодаря спектральному анализу открыто 25 элементов.
Благодаря сравнительной простоте и универсальности спектральный анализ является основным методом контроля состава вещества в металлургии и машиностроении. С помощью спектрального анализа определяют химический состав руд и минералов,
Спектральный анализ можно производить как по спектрам испускания, так и по спектрам поглощения.
Состав сложных смесей анализируется по молекулярному спектру.

Спектр электромагнитного излучения в порядке увеличения частоты составляют:1) Низкочастотные волны; 2) Радиоволны; 3) Инфракрасное излучение; 4) Световое излучение; 5) Рентгеновское излучение; 6) Гамма излучение.

Все эти волны обладают общими свойствами: поглощение, отражение, интерференция, дифракция, дисперсия. Свойства эти могут, однако, проявляться по-разному. Различными являются источники и приемники волн.

Радиоволны: ν=105— 1011 Гц, λ=10-3-103 м.

Получают с помощью коле­бательных контуров и макро­скопических вибраторов. Свойства. Радиоволны различных ча­стот и с различными длинами волн по-разному поглощаются и отражаются средами. Применение Радиосвязь, телевидение, радиолокация.

Рекомендуемые страницы:

§

ν=3-1011— 4.1014 Гц, λ=8.10-7 — 2.10-3 м.

Излучается атомами и мо­лекулами вещества.

Инфракрасное излучение дают все тела при любой тем­пературе.

Человек излучает электро­магнитные волны λ≈9.10-6 м.

Свойства

  1. Проходит через некото­рые непрозрачные тела, а так­же сквозь дождь, дымку, снег.
  2. Производит химическое действие на фотопластинки.
  3. Поглощаясь веществом, нагревает его.
  4. Вызывает внутренний фотоэффект у германия.
  5. Невидимо.

Регистрируют тепловыми методами, фотоэлектрическими и фотографическими.

Применение. Получают изображения предметов в темноте, приборах ночного видения (ночные бинокли), тумане. Используют в криминалистике, в физиотерапии, в промышленности для сушки окрашенных изделий, стен зданий, древесины, фруктов.

Видимое излучение

Часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового):

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Свойства.Воздействует на глаз.

Ультрафиолетовое излучение

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

(меньше, чем у фиолетового света)

Источники: газоразрядные лампы с трубками из кварца (кварцевые лампы).

Излучается всеми твердыми телами, у которых T>1000°С, а также светящимися парами ртути.

Свойства. Высокая химическая активность (разложение хлорида сереб­ра, свечение кристаллов сульфида цинка), невидимо, большая проникающая способность, убивает микроорганизмы, в неболь­ших дозах благотворно влияет на организм человека (загар), но в больших дозах оказывает отрицательное биологическое воздей­ствие: изменения в развитии клеток и обмене веществ, действие на глаза.

Рентгеновские лучи

Излучаются при большом ускорении электронов, например их торможение в металлах. Получают при помощи рентгеновской трубки: электроны в вакуумной трубке (р= 10-3-10-5 Па) ускоряются электриче­ским полем при высоком напряжении, достигая анода, при со­ударении резко тормозятся. При торможении электроны движут­ся с ускорением и излучают электромагнитные волны с малой длиной (от 100 до 0,01 им). Свойства Интерференция, дифракция рентгеновских лучей на кристаллической решетке, большая проникающая способность. Облуче­ние в больших дозах вызывает лучевую болезнь. Применение. В медицине (диагностика заболеваний внутренних органов), в промышленности (контроль внутренней структуры различных изделий, сварных швов), на ж/д транспорте (в дефектоскопии).

γ-излучение

Источники: атомное ядро (ядерные реакции). Свойства. Имеет огромную проникающую способность, оказывает силь­ное биологическое воздействие. Применение. В медицине, производстве (γ-дефектоскопия)

Билет 19.

1. Внутренняя энергия и способы её изменения. Первый закон термодинамики и его применение к изопроцессам.

Внутренняя энергия — сумма кинетических энергий хаотического движения всех частиц тела относительно центра масс тела (молекул, атомов) и потенциальных энергий их взаимодействия друг с другом называется внутренней энергией. Кинетическая энергия частиц определяется скоростью, а значит — температурой тела. Потенциальная — расстоянием между частицами, а значит — объемом.

Следовательно: U=U(T,V) — внутренняя энергия зависит от объема и температуры.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentationАвтоколебания. Генератор незатухающих электромагнитных колебаний - online presentation Внутренняя энергия одноатомного идеального газа:

Для идеального газа: U=U(T), т.к. взаимодействием на расстоянии пренебрегаем.

Способы изменения внутренней энергии.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation 1.Совершение работы А . 2. 2.Теплопередача Q.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation Работа газа :

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation Работа внешних сил над газом:

Количество теплоты

Q = cm(t2-t1) – нагревание (охлаждение)

Q=±lm — плавление (отвердевание)

Q = ±Lm — парообразование (конденсация)

Q = qm – сгорание топлива

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentationПервый закон термодинамики: изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation Если А — работа внешних сил, а А’ — работа газа, то А = — А’ (в соответствии с 3-м законом Ньютона). Тогда применяется другая форма записи первого законатермодинамики: количество теплоты, переданное системе равно сумме изменения внутренней энергии системы и работы системы над внешними телами.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Применение первого закона термодинамики к изопроцессам, происходящим с идеальным газом.
В изотермическом процессе температура постоянная, следовательно, внутренняя энергия не меняется. Тогда уравнение первого закон термодинамики примет вид: Q =A/ ,

т. е. количество теплоты, переданное системе, идет на совершение работы при изотермическом расширении, именно поэтому температура не изменяется.
В изобарном процессе газ расширяется и количество теплоты, переданное газу, идет на увеличение его внутренней энергии и на совершение им работы: .
Q = A/ ΔU
При изохорном процессе газ не меняет своего объема, следовательно, работа им не совершается, т. е. А = 0, и уравнение первого закона имеет вид ,Q= ΔU,

т. е. переданное количество теплоты идет на увеличение внутренней энергии газа.
Адиабатным называют процесс, протекающий без теплообмена с окружающей средой, т.е. Q = 0,

следовательно, газ при расширении совершает работу за счет уменьшения его внутренней энергии, следовательно, газ охлаждается. A/ = -ΔU

2. Постулаты специальной теории относительности. Полная энергия. Энергия покоя.

СТО – новая теория о пространстве и времени.

Первый постулат: законы физики имеют одинаковую форму во всех инерциальных системах отсчета. Этот постулат явился обобщением принципа относительности Ньютона не только на законы механики, но и на законы остальной физики. Первый постулат — принцип относительности.

Рекомендуемые страницы:

§

Эти два постулата образуют основу теории относительности А. Эйнштейна.

Из постулатов СТО следует, что скорость света в вакууме является предельно возможной. Никакой сигнал, никакое воздействие одного тела на другое не могут распространяться со скоростью, превышающей скорость света в вакууме.

Релятивистское замедление времени. Если t – интервал времени между двумя событиями, происходящими в одной и той же пространственной точке, неподвижной относительно системы K ‘, а t – интервал времени между этими же событиями в системе K, то

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

где c – скорость света в вакууме. Время t, отсчитываемое по часам, покоящимся относительно данного тела, называется собственным временем. Оно всегда меньше времени, измеренного по движущимся часам: t < t.

Релятивистское сокращение длины

Если l – длина расположенного вдоль оси x ‘ стержня в системе K ‘, относительно которой он покоится, а l – длина этого стержня в системе K, относительно которой он движется вдоль оси x со скоростью v, то:

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Поперечные размеры движущегося стержня не изменяются. Линейный размер стержня l в той системе отсчета, где он покоится, называется собственной длиной. Эта длина максимальна: l > l.

Полная энергия тела или системы тел:

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation,где E = mc2 – энергия покоящегося тела.

При изменении массы тела на Δm выделяется эквивалентная энергия ΔE = Δmc2.

Билет 20.

1.Тепловые машины: основные части и принцип действия. Коэффициент полезного действия тепловой машины и способы его повышения. Проблемы энергетики и окружающей среды. Дизельные двигатели и их применение на ж/д транспорте.

Большая часть двигателей, используемых людьми, — это тепловые двигатели. Устройства, превращающие энергию топлива в механическую энергию, называются тепловыми двигателями. Любой тепловой двигатель (паровые и газовые турбины, двигатели внутреннего сгорания) состоит из трех основных элементов: рабочего тела (это газ), которое совершает работу в двигателе; нагревателя, от которого рабочее тело получает энергию, часть которой затем идет на совершение работы; холодильника, которым является атмосфера или специальные устройства (рис. 28).

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Ни один тепловой двигатель не может работать при одинаковой температуре его рабочего тела и окружающей среды. Обязательно температура нагревателя больше температуры холодильника. При совершении работы тепловыми двигателями происходит передача теплоты от более горячих тел к более холодным. Рабочее тело двигателя получает количество теплоты Qн от нагревателя, совершает работу А и передает холодильнику количество теплоты Qx. В соответствии с законом сохранения энергии .
Отношение работы к энергии, которое получило рабочее тело от нагревателя, называют коэффициентом полезного действия (КПД):

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Паровая или газовая турбина, двигатель внутреннего сгорания, реактивный двигатель работают на базе ископаемого топлива. В процессе работы многочисленных тепловых машин возникают тепловые потери, которые в конечном счете приводят к повышению внутренней энергии атмосферы, т. е. к повышению ее температуры. Это может привести к таянию ледников и катастрофическому повышению уровня Мирового океана, а вместе с тем к глобальному изменению природных условий. При работе тепловых установок и двигателей в атмосферу выбрасываются вредные для человека, животных и растений оксиды азота, углерода и серы. С вредными последствиями работы тепловых машин можно бороться путем повышения КПД, их регулировки и создания новых двигателей, не выбрасывающих вредные вещества с отработанными газами.

Тепловые машины широко используют на производстве и в быту. По железнодорожным магистралям водят составы мощные тепловозы, по водным путям – теплоходы. Миллионы автомобилей с двигателями внутреннего сгорания перевозят грузы и пассажиров. Поршневыми , турбовинтовыми и турбореактивными двигателями снабжены самолеты и вертолеты. С помощью ракетных двигателей осуществляются запуски искусственных спутников, космических кораблей и станций. Двигатели внутреннего сгорания являются основой механизации производственных процессов в сельском хозяйстве. Их устанавливают на тракторах, комбайнах, самоходных шасси, насосных станциях. ТЕПЛОВОЗ — автономный локомотив, на котором в качестве силовой энергетической установки используется тепловой поршневой двигатель внутреннего сгорания — дизельный двигатель, величина эффективного кпд которого достигает 40—45%. Применение дизельного двигателя вместо паросиловой энергетической установки паровоза обеспечивает высокий уровень кпд тепловоза (26-31%), превышающий кпд паровоза в 4-5 раз.
Название«тепловоз» сложилось в России по типу названия паровоза.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Рекомендуемые страницы:

§

Обратимым называется процесс, который отвечает следующим условиям:

  1. его можно провести в двух противоположных направлениях;
  2. в каждом из этих случаев система и окружающие ее тела проходят через одни и те же промежуточные состояния;
  3. после проведения прямого и обратного процессов система и окружающие ее тела возвращаются к исходному состоянию.

Всякий процесс, не удовлетворяющий хотя бы одному из этих условий, является необратимым.

Так, можно доказать, что абсолютно упругий шарик, падая в вакууме на абсолютно упругую плиту, вернется после отражения в исходную точку, пройдя в обратном направлении все те промежуточные состояния, которые он проходил при падении.

Но в природе нет строго консервативных систем, в любой реальной системе действуют силы трения. Поэтому все реальные процессы в природе необратимы.

Реальные тепловые процессы также необратимы.

Примеры:

  1. При диффузии выравнивание концентраций происходит самопроизвольно. Обратный же процесс сам по себе никогда не пойдет: никогда самопроизвольно смесь газов, например, не разделится на составляющие ее компоненты. Следовательно, диффузия — необратимый процесс.
  2. Теплообмен, как показывает опыт, также является односторонне направленным процессом. В результате теплообмена энергия передается сама по себе всегда от тела с более высокой температурой к телу с более низкой температурой. Обратный процесс передачи теплоты от холодного тела к горячему сам по себе никогда не происходит.
  3. Необратимым является также процесс превращения механической энергии во внутреннюю при неупругом ударе или при трении.

Между тем из первого закона термодинамики направленность и тем самым необратимость тепловых процессов не вытекает. Первый закон термодинамики требует лишь, чтобы количество теплоты, отданное одним телом, в точности равнялось количеству теплоты, которое получит другое. А вот вопрос о том, от какого тела, от горячего к холодному или наоборот, перейдет энергия, остается открытым.

Направленность реальных тепловых процессов определяется вторым законом термодинамики, который был установлен непосредственным обобщением опытных фактов. Это постулат. Немецкий ученый Р. Клаузиус дал такую формулировку второго закона термодинамики: невозможно перевести тепло от более холодной системы к более горячей при отсутствии других одновременных изменений в обеих системах или окружающих телах.

Из второго закона термодинамики вытекает невозможность создания вечного двигателя второго рода, т.е. двигателя, который бы совершал работу за счет охлаждения какого-либо одного тела.

Элементарный электрический заряд. Два рода электрических зарядов. Закон сохранения электрического заряда. Закон Кулона. Электрическое поле. Напряжённость электрического поля. Силовые линии. Суперпозиция электрических полей.

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Электрический заряд обычно обозначается буквами q или Q.

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

· Существует два рода электрических зарядов, условно названных положительными и отрицательными.

· Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

· Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда.

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

q1 q2 q3qn = const.

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

С современной точки зрения, носителями зарядов являются элементарные частицы. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду e.

Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов. Таким образом, электрический заряд тела – дискретная величина:

В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами.

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Силы взаимодействия подчиняются третьему закону Ньютона: Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках (рис. 1.1.3). Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Коэффициент k в системе СИ обычно записывают в виде:

где Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentationэлектрическая постоянная.

В системе СИ элементарный заряд e равен:

e = 1,602177·10–19 Кл ≈ 1,6·10–19 Кл.

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции.

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ— существует вокруг электрического заряда, материально.
Основное свойство электрического поля: действие с силой на электрический заряд, внесенный в него.
Электростатическое поле— поле неподвижного эл.заряда, не меняется со временем.
Напряженность электрического поля.-силовая характеристика эл. поля.
— это отношение силы, с которой поле действует на внесенный точечный заряд к величине этого заряда.
— не зависит от величины внесенного заряда, а характеризует электрическое поле!

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Направление вектора напряженности
совпадает с направлением вектора силы, действующей на положительный заряд, и противоположно направлению силы, действующий на отрицательный заряд.

В любой точке поля напряженность направлена всегда вдоль прямой, соединяющей эту точку и q0.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Рекомендуемые страницы:

§

Потенциал. Разность потенциалов. Напряжение.
Потенциал электростатического поля — скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду: Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
— энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.
Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.
За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.
 
Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
— следствие принци­па суперпозиции полей (потенциалы складываютсяалгебраически).
Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.
В СИ потенциал измеряется в вольтах: Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
 
Разность потенциалов
Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentationАвтоколебания. Генератор незатухающих электромагнитных колебаний - online presentation  
Напряжение — разность значений потенциала в начальной и конечнойточках траектории.
Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.Разность потенциалов (напряжение) не зависит от выборасистемы координат!
Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
Единица разности потенциалов
Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж.
Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
Связь между напряженностью и напряжением.
 
Напряженность равна скорости изменения потенциала вдоль направления d.
Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
Из этого соотношения видно:
  1. Вектор напряженности направлен в сторону уменьшения потенциала.
  2. Электрическое поле существует, если существует разность потенциалов.
  3. Единица напряженности: Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentationНапряженность поля равна 1 В/м, если между двумя точками поля, находящимися на расстоянии 1 м друг от друга существует разность потенциалов 1 В.
Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentationАвтоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
Эквипотенциальные поверхности.
ЭПП — поверхности равного потенциала.
Свойства ЭПП:
— работа при перемещении заряда вдоль эквипотенциальной поверхности не совершается;
— вектор напряженности перпендикулярен к ЭПП в каждой ее точке.
Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentationАвтоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

2. Модель строения атомного ядра. Ядерные силы. Энергия связи. Ядерные реакции.
В 1932г. после открытия протона и нейтрона учеными Д.Д. Иваненко (СССР) и В. Гейзенберг (Германия) была выдвинута протонно-нейтронная модель ядра атома.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Согласно этой модели:
— ядра всех химических элементов состоят из нуклонов: протонов и нейтронов
— заряд ядра обусловлен только протонами
— число протонов в ядре равно порядковому номеру элемента
— число нейтронов равно разности между массовым числом и числом протонов (N=A-Z)

Условное обозначение ядра атома химического элемента:

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

X – символ химического элемента
А – массовое число, которое показывает :
— массу ядра в целых атомных единицах массы (а.е.м.)
(1а.е.м. = 1/12 массы атома углерода)
— число нуклонов в ядре (A = N Z) , где N – число нейтронов в ядре атома
Z – зарядовое число, которое показывает:
— заряд ядра в элементарных электрических зарядах (э.э.з.)
( 1э.э.з. = заряду электрона = 1,6 х 10-19 Кл)
— число протонов
— число электронов в атоме
— порядковый номер в таблице Менделеева
Ядерные силысилы притяжения, связывающие протоны и нейтроны в ядре.

Свойства:

1.На расстояниях порядка 10-13см сильные взаимодействия соответствуют притяжению, при уменьшении расстояния – отталкиванию.

2.Независимы от наличия электрического заряда (свойство зарядовой независимости) Одинаковая сила действует и на протон и на нейтрон.

3.Взаимодействуют с ограниченным числом нуклонов (свойство насыщения).

4.Короткодействующие: быстро убывают, начиная с r ≈ 2,2.10-15 м.

Энергия, которая необходима для полного расщепления ядра на отдельные нуклоны, называется энергией связи. Энергия связи очень велика. При синтезе 4 г гелия выделяется такое же количество энергии, как при сжигании двух вагонов каменного угля.

Масса ядра всегда меньше суммы масс покоя свободных протонов и нейтронов, его составляющих.
Разность между массой ядра и суммой масс протонов и нейтронов называется дефектом масс.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Формула для вычисления энергии связи:

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentationАвтоколебания. Генератор незатухающих электромагнитных колебаний - online presentation — дефект массы.

mpмасса покоя протона; mnмасса покоя нейтрона. Мя — масса ядра атома.

В атомной физике массу удобно выражать в атомных единицах массы:

1 а.е.м.=1,67·10-27 кг. Коэффициент связи энергии и массы (равный с2): с2= 931,5 МэВ/а·е·м.

Ядерные реакциипревращения атомных ядер, вызванные их взаимодействиями с различными частицами или друг с другом.

Символическая запись: А а = В b. При написании ядерных реакций используются законы сохранения заряда и массового числа (числа нуклонов).

Примеры:

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Энергетический выход ядерной реакции — разность между суммарной энергией связи частиц, участвующих в реакции и продуктов реакции.

Реакции, происходящие с выделением энергии, наз. экзотермическими, с поглощением — эндотермическими.

Билет 23.

Рекомендуемые страницы:

§

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Электромагнитные кванты гамма-излучения не имеют массы покоя и электрического заряда, поэтому при прохождении через вещество они очень слабо взаимодействуют с ядрами и электронами. Их энергия почти не меняется, поэтому гамма-излучение обладает большой проникающей способностью. Защитой от гамма-излучения является толстый слой свинца.

Закон радиоактивного распада установлен Ф. Содди.

Опытным путем Э. Резерфорд установил, что активность радиоактивного распада убывает с течением времени.

Используя закон радиоактивного распада, можно определить число нераспавшихся атомов какого-то количества радиоактивного вещества в любой момент времени:

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Время, за которое распадается половина первоначального числа радиоактивных ядер, называется периодом полураспада (Т).
Чем меньше период полураспада, тем меньше живут атомы, тем быстрее происходит распад.
Для разных химических элементов величина периода полураспада различна : от миллионных долей секунд (например, полоний)до миллиардов лет (например, уран).

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation …… Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Период полураспада — это постоянная величина для данного химического элемента, и ее невозможно изменить.
Период полураспада определяет скорость радиоактивного распада.

2 Магнитные свойства вещества.

Вещества бывают парамагнитными, ферромагнитные и диамагнитные.

Парамагнитные— вещества, магнитная проницаемость которых немного больше, чем у вакуума. Попадая в магнитное поле, они немного усиливают его за счет своего магнетизма. Ферромагнитные- вещества, магнитная проницаемость которых во много раз больше, чем у вакуума. Попадая в магнитное поле, они намагничиваются и значительно усиливают его за счет своего магнетизма. Диамагнитные— вещества, магнитная проницаемость которых меньше, чем у вакуума. Они ослабляют магнитное поле, в которое попали. Магнитное поле внутри диамагнитного вещества меньше, чем снаружи.

Ферромагнетики.

Ферромагнетики- вещества, магнитная проницаемость которых во много раз больше, чем у вакуума. Их применяют для получения сильного магнитного поля. Попадая в магнитное поле, они намагничиваются и значительно усиливают его за счет своего магнетизма. В их атомах есть электроны, которые, двигаясь по орбитам вокруг ядер, совершают вращение вокруг своей оси. Магнитные поля таких электронов очень сильные и так расположены в пространстве, что при наложении усиливают друг друга. Внешнее магнитное поле у полюсов ферромагнетиков велико, так как велико и внутреннее

Температура Кюри при температуре, большей некоторой определённой для данного ферромагнетика, ферромагнитные свойства его исчезают. Эту температуру называют температурой Кюри по имени открывшего это явление французского учёного. Если сильно нагреть намагниченный гвоздь, то он потеряет способность притягивать к себе железные предметы. Для железа-753С, никель 363С, кобальт 1000С. существуютт ферромагнитные сплавы, у которых температура Кюри меньше 100 C

Билет 24.
1.Деление ядер урана. Цепная ядерная реакция. Ядерная энергетика. Термоядерные реакции.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
Делиться могут только ядра некоторых тяжелых элементов, например, урана.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Ядро урана — 235 имеет форму шара. Поглотив нейтрон, ядро возбуждается и начинает деформироваться.
Оно растягивается из стороны в сторону до тех пор, пока кулоновские силы отталкивания между протонами не начнут преобладать над ядерными силами притяжения. После этого ядро разрывается на две части и осколки разлетаются со скоростью 1/30 скорости света. При делении ядра образуются еще 2 или 3 нейтрона.
Появление нейтронов объясняется тем, что число нейтронов в осколках оказывается больше, чем это допустимо.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Имеющие огромную скорость разлетающиеся осколки тормозятся окружающей средой.
Кинетическая энергия осколков превращается во внутреннюю энергию среды, которая нагревается.
Таким образом, деление ядер урана сопровождается выделением большого количества энергии.

ЦЕПНАЯ ЯДЕРНАЯ РЕАКЦИЯ
— это процесс, в котором одна проведенная реакция вызывает последующие реакции такого же типа.
При делении одного ядра урана образовавшиеся нейтроны могут вызвать деления других ядер урана, при этом число нейтронов нарастает лавинообразно.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Отношение числа образовавшихся нейтронов в одном акте деления к числу таких нейтронов в предыдущем акте деления называется коэффициентом размножения нейтронов k.
При k меньше 1 реакция затухает, т.к. число поглощенных нейтронов больше числа вновь образовавшихся.
При k больше 1 почти мгновенно происходит взрыв.
При k равном 1 идет управляемая стационарная цепная реакция.
Цепная реакция сопровождается выделением большого количества энергии.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Для осуществления цепной реакции не получается использовать любые ядра, делящиеся под влиянием нейтронов.
Используемый в качестве топлива для атомных реакторов химический элемент уран состоит в природе из двух изотопов: урана-235 и урана — 238.
В природе изотопы урана-235 составляют всего лишь 0,7% от всего запаса урана, однако именно они пригодны для проведения цепной реакции, т.к. делятся под влиянием медленных нейтронов.
Ядра урана-238 могут делиться лишь под влиянием нейтронов большой энергии (быстрых нейтронов). Такую энергию имеют только 60% нейтронов, появляющихся при делении ядра урана-238. Примерно только 1 из 5 образовавшихся нейтронов вызывает деление ядра.
Условия протекания цепной реакции в уране-235:
— минимальное количество топлива (критическая масса), необходимое для проведения управляемой цепной реакции в атомном реакторе;
— скорость нейтронов должна вызывать деление ядер урана;
— отсутствие примесей, поглощающих нейтроны.
Критическая масса:
— если масса урана мала, нейтроны будут вылетать за его пределы, не вступая в реакцию
— если масса урана велика, возможен взрыв за счет сильного увеличения числа нейтронов
— если масса соответствует критической, протекает управляемая цепная реакция

Для урана-235 критическая масса составляет 50 кг (это, например, шар из урана диаметром 9 см).
Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Первая управляемая цепная реакция — США в 1942 г. (Э.Ферми)
В СССР — 1946 г. (И.В.Курчатов).

ЯДЕРНЫЙ РЕАКТОР— это устройство на атомной электростанции для получения атомной энергии.
Назначение ядерного реактора: преобразование внутренней энергии атомного ядра в электрическую энергию.
В ядерном реакторе осуществляется управляемая цепная реакция деления ядер (при k = 1).
Ядерными реакторами оснащены все АЭС (атомные электростанции).
Основные элементы ядерного реактора:
— топливо (уран-235, уран-238, плутоний-239) в виде стержней;
— замедлитель нейтронов (тяжелая вода, графит);
— теплоноситель (вода, жидкий натрий);
— устройство для регулирования реакции (кадмий, бор);
— защита (оболочка из бетона и железа).
Работа реактора:

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Реактор работает на медленных нейтронах (более эффективно идет деление ядер урана-235).
Активная зона реактора, содержит ядерное топливо — урановые стержни и замедлитель — воду. Вода вокруг урановых стержней является не только замедлителем нейтронов, но и служит для отвода тепла, т.к. внутренняя энергия разлетающихся осколков переходит во внутреннюю энергию окружающей среды — воды. Активная зона окружена отражателем для возвращения нейтронов и защитным слоем бетона.
Достижение критической массы топлива осуществляется введением регулирующих стержней (до достижения массы урана = критической массе).
Активная зона посредством труб соединена в кольцо (1-ый контур).
Вода прокачивается по трубам контура насосом и отдает свою энергию змеевику в теплообменнике, нагревая воду в змеевике (во 2-м контуре).
Вода в змеевике превращается в пар, температура которого может достигать 540 градусов.
Пар вращает турбину, энергия пара превращается в механическую энергию.
Ось турбины вращает ротор электрогенератора, превращая механическую энергию в электрическую.
Отработанный (охлажденный ) пар поступает в конденсатор, где превращается в воду, возвращающуюся в 1-ый контур.
Первая АЭС была построена в г. Обнинске (СССР).
Преимущества АЭС:
— ядерные реакторы не потребляют кислород и органическое топливо
— не загрязняют окружающую среду золой и вредными для человека продуктами органического топлива
— биосфера надежно защищена от радиоактивного воздействия при нормальном режиме эксплуатации АЭС.
Недостатки АЭС:
— необходимость захоронения радиоактивных отходов и демонтаж отслуживших свой срок реакторов
— опасность радиоактивного заражения местности при аварийных выбросах
— опасность экологических катастроф ((1986 г. — Чернобыльская АЭС).
Существуют ядерные реакторы на быстрых нейтронах — размножители.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

В термоядерную реакцию вступают легкие ядра, а в результате синтеза (слияния) они образуют более тяжелое ядро.
Такие термоядерные реакции при температурах в миллионы градусов идут в недрах Солнца, где ядра изотопов водорода, сливаясь вместе, образуют более тяжелое ядро атома гелия, при этом выделяется огромная энергия.
Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
Чтобы провести слияние (синтез) ядер, т.е. соединить положительно заряженные ядра в новое ядро, необходимо преодолеть действующие между ними кулоновские (электростатические) силы отталкивания.
Чтобы преодолеть силы отталкивания участвующие в синтезе частицы должны обладать очень большой кинетической энергией, т.е. иметьбольшую скорость. Большая скорость частиц достигается повышением температуры вещества до миллионов градусов.
Ядерный реакция, происходящая в разогретом веществе называется термоядерной реакцией (синтезом).
При таких температурах вещество может существовать только в виде плазмы (полностью ионизированного газа, состоящего из положительно заряженных ионов и отрицательно заряженных электронов).

2.Состав белого света. Световая сигнализация. Цвет на ж/д транспорте.

Спектр белого света состоит из электромагнитных волн, имеющих длину от 350 (фиолетовый) до 650 нм (красный).Белый свет – сложный, он состоит из 7 основных цветов:

Красный – каждый как

Оранжевый – охотник однажды

Жёлтый – желает Жак-

Зелёный – знать звонарь

Голубой — где городской

Синий – сидит спилил

Фиолетовый — фазан фонарь

Если объединить7 разноцветных лучей в один луч, то получится белый свет.

Мы воспринимаем цвет благодаря трем типам светочувствительных клеток, называемых колбочками и расположенных в сетчатке глаза. Каждый тип клеток обладает максимальной чувствительностью к разным частям светового спектра, соответствующим основным цветам света — синему, зеленому и красному.

Объект можно увидеть, только если он отражает или пропускает свет. Если же объект почти полностью поглощаетпадающий свет, то объект принимает черный цвет. А когда объект отражает почти весь падающий свет, он принимает белый цвет. Таким образом, можно сразу сделать вывод о том, что цвет объекта будет определяться количеством поглощенного и отраженного света, которым этот объект освещается. Способность отражать и поглощать свет определятся молекулярной структурой вещества, иначе говоря — физическими свойствами объекта. Цвет предмета «не заложен в нем от природы»! От природы в нем заложены физические свойства: отражать и поглощать.
Цвет объекта и цвет источника излучения неразрывно связаны между собой, и эта взаимосвязь описывается тремя условиями.
Первое условие:Цвет объект может принимать только при наличии источника освещения. Если нет света, не будет и цвета! Красная краска в банке будет выглядит черной. В темной комнате мы не видим и не различаем цветов, потому что их нет. Будет черный цвет всего окружающего пространства и находящихся в нем предметов.
Второе условие: Цвет объекта зависит от цвета источника освещения. Если источник освещения красный светодиод, то все освещаемые этим светом объекты будут иметь только красные, черные и серые цвета.
И наконец, Третье условие: Цвет объекта зависит от молекулярной структуры вещества, из которого состоит объект.
Зеленая трава выглядит для нас зеленой, потому что при освещении белым светом она поглощает красную и синюю волну спектра и отражает зеленую волну.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
Рисунок – Отражение зеленой волны спектра
Бананы на рисунке выглядят желтыми, потому что они отражают волны, лежащие в желтой области спектра (желтую волну спектра) и поглощает все остальные волны спектра.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
Рисунок – Отражение желтой волны спектра
Собачка, та что изображена на рисунке – белая. Белый цвет – результат отражения всех волн спектра.
Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation
Рисунок – Отражение всех волн спектра
Цвет предмета – это цвет отраженной волны спектра. Вот так предметы приобретают видимый нами цвет.

В световой сигнализации транспорта используются три цвета — красный, желтый и зеленый. Для человека исстари сложилось, что красный цвет — сигнал опасности, тревоги. Именно огонь был для него всегда таким знаком. Красный цвет стал общепризнанным сигналом предупреждения об опасности. И наоборот, зеленый сигнал всегда олицетворялся с безопасностью, спокойствием, поэтому было естественным использовать его в качестве разрешающего сигнала светофора.
Лучи красного цвета имеют наибольшую длину волны и распространяются с наименьшими потерями. Поэтому красный цвет виден дальше всех. Красный сигнал лучше заметен и именно он принят как сигнал опасности. Это особенно важно, например, в условиях недостаточной видимости. Так, туман поглощает синие и зеленые лучи, поэтому зеленый цвет в тумане может воспринимается как желтый, а желтый как красный. Если водитель в тумане ошибочно примет желтый цвет за красный, а зеленый за желтый, то такие ошибки не создадут опасности для движения.
В начале на светофорах вверху располагался зеленый сигнал, но потом пришли к единодушному мнению, что красный сигнал более важный для водителей и пешеходов и поэтому он должен быть более заметным. Неслучайно поэтому в последнее время даже стали делать линзы для этого сигнала больше остальных.

Билет 25.

Рекомендуемые страницы:

Генератор на транзисторе. автоколебания — класс!ная физика

«Физика — 11 класс»

Вынужденные колебания возникают под действием переменного напряжения, вырабатываемого генераторами на электростанциях.
Такие генераторы не могут создавать колебания высокой частоты, необходимые для радиосвязи? т.к. для этого потребовалась бы очень большая скорость вращения ротора.
Колебания высокой частоты получают, например, с помощью генератора на транзисторе.

Автоколебательные системы

Обычно незатухающие вынужденные колебания поддерживаются в цепи действием внешнего периодического напряжения.
Но возможны и другие способы получения незатухающих колебаний.

Например, есть система, в которой могут существовать свободные электромагнитные колебания, с источником энергии.
Если сама система будет регулировать поступление энергии в колебательный контур для компенсации потерь энергии на резисторе, то в ней могут возникнуть незатухающие колебания.

Системы, в которых генерируются незатухающие колебания за счет поступления энергии от источника внутри самой системы, называются автоколебательными. Незатухающие колебания, существующие в системе без воздействия на нее внешних периодических сил, называются автоколебаниями.

Генератор на транзисторе — пример автоколебательной системы.
Он состоит из колебательного контура с конденсатором емкостью С и катушкой индуктивностью L, источника энергии и транзистора.

Как создать незатухающие колебания в контуре?

Чтобы электромагнитные колебания в контуре не затухали, нужно компенсировать потери энергии за каждый период.

Пополнять энергию в контуре можно, подзаряжая конденсатор.
Для этого надо периодически подключать контур к источнику постоянного напряжения.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Конденсатор должен подключаться к источнику только в те интервалы времени, когда присоединенная к положительному полюсу источника пластина заряжена положительно, а присоединенная к отрицательному полюсу — отрицательно.
Только в этом случае источник будет подзаряжать конденсатор, пополняя его энергию.

Если же ключ замкнуть в момент, когда присоединенная к положительному полюсу источника пластина имеет отрицательный заряд, а присоединенная к отрицательному полюсу — положительный, то конденсатор будет разряжаться через источник. Энергия конденсатора при этом будет убывать.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Источник постоянного напряжения, постоянно подключенный к конденсатору контура, не может поддерживать в нем незатухающие колебания, так же как постоянная сила не может поддерживать механические колебания.
В течение половины периода энергия поступает в контур, а в течение следующей половины периода возвращается в источник.

В контуре незатухающие колебания установятся лишь при условии, что источник будет подключаться к контуру в те интервалы времени, когда возможна передача энергии конденсатору.
Для этого необходимо обеспечить автоматическую работу ключа.
При высокой частоте колебаний ключ должен обладать надежным быстродействием. В качестве такого практически безынерционного ключа и используется транзистор.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Транзистор состоит из эмиттера, базы и коллектора.
Эмиттер и коллектор имеют одинаковые основные носители заряда, например дырки (полупроводник p-типа).
База имеет основные носители противоположного знака, например электроны (полупроводник n-типа).

Работа генератора на транзисторе

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Колебательный контур соединен последовательно с источником напряжения и транзистором так, что на эмиттер подается положительный потенциал, а на коллектор — отрицательный.
При этом переход эмиттер — база (эмиттерный переход) является прямым, а переход база — коллектор (коллекторный переход) оказывается обратным, и ток в цепи не идет.
Это соответствует разомкнутому ключу.

Чтобы в цепи контура возникал ток и подзаряжал конденсатор контура в ходе колебаний, нужно сообщать базе отрицательный относительно эмиттера потенциал, причем в те интервалы времени, когда верхняя пластина конденсатора заряжена положительно, а нижняя — отрицательно.
Это соответствует замкнутому ключу.

В интервалы времени, когда верхняя пластина конденсатора заряжена отрицательно, а нижняя — положительно, ток в цепи контура должен отсутствовать. Для этого база должна иметь положительный потенциал относительно эмиттера.

Таким образом, для компенсации потерь энергии колебаний в контуре напряжение на эмиттерном переходе должно периодически менять знак в строгом соответствии с колебаниями напряжения на контуре.
Необходима обратная связь.

Здесь обратная связь — индуктивная.
К эмиттерному переходу подключена катушка индуктивностью LCB, индуктивно связанная с катушкой индуктивностью L контура.
Колебания в контуре вследствие электромагнитной индукции возбуждают колебания напряжения на концах катушки, а тем самым и на эмиттерном переходе.
Если фаза колебаний напряжения на эмиттерном переходе подобрана правильно, то «толчки» тока в цепи контура действуют на контур в нужные интервалы времени, и колебания не затухают.
Напротив, амплитуда колебаний в контуре возрастает до тех пор, пока потери энергии в контуре не станут точно компенсироваться поступлением энергии от источника.
Эта амплитуда тем больше, чем больше напряжение источника.
Увеличение напряжения приводит к усилению «толчков» тока, подзаряжающего конденсатор.

Генераторы на транзисторах широко применяются не только во многих радиотехнических устройствах: радиоприемниках, передающих радиостанциях, усилителях, ЭВМ.

Основные элементы автоколебательной системы

На примере генератора на транзисторе можно выделить основные элементы, характерные для многих автоколебательных систем.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

1. Источник энергии, за счет которого поддерживаются незатухающие колебания (в генераторе на транзисторе это источник постоянного напряжения).

2. Колебательная система — та часть автоколебательной системы, непосредственно в которой происходят колебания (в генераторе на транзисторе это колебательный контур).

3. Устройство, регулирующее поступление энергии от источника в колебательную систему — клапан (в рассмотренном генераторе — транзистор).

4. Устройство, обеспечивающее обратную связь, с помощью которой колебательная система управляет клапаном (в генераторе на транзисторе — индуктивная связь катушки контура с катушкой в цепи эмиттер — база).

Примеры автоколебательных систем

Автоколебания в механических системах: часы с маятником или балансиром (колесиком с пружинкой, совершающим крутильные колебания). Источником энергии в часах служит потенциальная энергия поднятой гири или сжатой пружины.

К автоколебательным системам относятся электрический звонок с прерывателем, свисток, органные трубы и многое другое. Наше сердце и легкие также можно рассматривать как автоколебательные системы.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Электромагнитные колебания. Физика, учебник для 11 класса — Класс!ная физика

Свободные и вынужденные электромагнитные колебания. Колебательный контур. Превращение энергии при электромагнитных колебаниях
Аналогия между механическими и электромагнитными колебаниями
Уравнение, описывающее процессы в колебательном контуре. Период свободных электрических колебаний
Переменный электрический ток
Активное сопротивление. Действующие значения силы тока и напряжения
Конденсатор в цепи переменного тока
Катушка индуктивности в цепи переменного тока
Резонанс в электрической цепи
Генератор на транзисторе. Автоколебания
Краткие итоги главы

§

«Физика — 11 класс»

1.
При электромагнитных колебаниях происходят периодические изменения электрического заряда, силы тока и напряжения. Электромагнитные колебания подразделяются на свободные, затухающие, вынужденные и автоколебания.

2.
Простейшей системой, в которой наблюдаются свободные электромагнитные колебания, является колебательный контур. Он состоит из проволочной катушки и конденсатора.
Свободные электромагнитные колебания возникают при разрядке конденсатора через катушку индуктивности.
Вынужденные колебания вызываются периодической ЭДС.
В колебательном контуре энергия электрического поля заряженного конденсатора периодически переходит в энергию магнитного поля тока.
При отсутствии сопротивления в контуре полная энергия электромагнитного поля остается неизменной.

3.
Электромагнитные и механические колебания имеют разную природу, но описываются одинаковыми уравнениями.
Уравнение, описывающее электромагнитные колебания в контуре, имеет вид

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

где
q — заряд конденсатора;
— вторая производная заряда по времени;
ω2 — квадрат циклической частоты колебаний, зависящей от индуктивности L и емкости С.

4.
Решение уравнения, описывающего свободные электромагнитные колебания, выражается либо через косинус, либо через синус:

q = qm cos ωt или q = qm sin ωt.

5.
Колебания, происходящие по закону косинуса или синуса, называются гармоническими.
Максимальное значение заряда qm на обкладках конденсатора называется амплитудой колебаний заряда.
Величина ω называется циклической частотой колебаний и выражается через число v колебаний в секунду: ω = 2πv.

Период колебаний выражается через циклическую частоту следующим образом:

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

Величину, стоящую под знаком косинуса или синуса в решении для уравнения свободных колебаний, называют фазой колебаний.
Фаза определяет состояние колебательной системы в данный момент времени при заданной амплитуде колебаний.

6.
Из-за наличия у контура сопротивления колебания в нем с течением времени затухают.

7.
Вынужденные колебания, т. е. переменный электрический ток, возникают в цепи под действием внешнего периодического напряжения.
Между колебаниями напряжения и силы тока в общем случае наблюдается сдвиг фаз φ.
В промышленных цепях переменного тока сила тока и напряжение меняются гармонически с частотой v = 50 Гц.
Переменное напряжение на концах цепи создается генераторами на электростанциях.

8.
Мощность в цепи переменного тока определяется действующими значениями силы тока и напряжения:

Р = IU cos φ.

9.
Сопротивление цепи с конденсатором обратно пропорционально произведению циклической частоты на электроемкость.

Автоколебания. Генератор незатухающих электромагнитных колебаний - online presentation

10.
Катушка индуктивности оказывает сопротивление переменному току.
Это сопротивление, называемое индуктивным, равно произведению циклической частоты на индуктивность.

ωL = ХL

11.
При вынужденных электромагнитных колебаниях возможен резонанс — резкое возрастание амплитуды силы тока при вынужденных колебаниях при совпадении частоты внешнего переменного напряжения с собственной частотой колебательного контура.
Резонанс выражен отчетливо лишь при достаточно малом активном сопротивлении контура.

Одновременно с возрастанием силы тока при резонансе происходит резкое увеличение напряжения на конденсаторе и катушке. Явление электрического резонанса используется при радиосвязи.

12.
Автоколебания возбуждаются в колебательном контуре генератора на транзисторе за счет энергии источника постоянного напряжения.
В генераторе используется транзистор, т. е. полупроводниковое устройство, состоящее из эмиттера, базы и коллектора и имеющее два р—n-перехода. Колебания тока в контуре вызывают колебания напряжения между эмиттером и базой, которые управляют силой тока в цепи колебательного контура (обратная связь).
От источника напряжения в контур поступает энергия, компенсирующая потери энергии в контуре на резисторе.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Электромагнитные колебания. Физика, учебник для 11 класса — Класс!ная физика

Свободные и вынужденные электромагнитные колебания. Колебательный контур. Превращение энергии при электромагнитных колебаниях
Аналогия между механическими и электромагнитными колебаниями
Уравнение, описывающее процессы в колебательном контуре. Период свободных электрических колебаний
Переменный электрический ток
Активное сопротивление. Действующие значения силы тока и напряжения
Конденсатор в цепи переменного тока
Катушка индуктивности в цепи переменного тока
Резонанс в электрической цепи
Генератор на транзисторе. Автоколебания

Рефераты:  Реферат - Ораторское искусство
Оцените статью
Реферат Зона
Добавить комментарий