Реферат по алгебре ученицы Храмцовой Ольги на тему «История возникновения алгебры» (7 класс) скачать doc

Реферат по алгебре ученицы Храмцовой Ольги на тему "История возникновения алгебры" (7 класс) скачать doc Реферат

Что такое ряд чисел фибоначчи

Математик Леонардо Фибоначчи с итальянского «Сын Добряка» приводит в 1202 году закономерную бесконечную последовательность интересных чисел. Каждый следующий элемент (натуральное число) — сумма двух впереди стоящих элементов:

1                
    1               
       = 2             
         = 3           
           = 5         
             = 8       
               = 13    
                 = 21, 34, 55, 89, 144,…

Формула получения элемента m последовательности Фибоначчи: L(m) = L(m-1) L(m-2), где m любой натуральный целый индекс. Поэтому элементы ряда четные следуют через 2 элемента нечетных (сумма 2-ух нечетных равна четному, а четного с нечетным равна нечетному).

В ряду натуральных чисел, первые два — единицы, но иногда применяется это множество, начинающееся с 0 и 1.

Некоторые удивительные математические свойства элементов ряда:

  • Частное от деления двух соседних чисел в ряду сходится (с увеличением m) и приближается к уникальному показателю 1,618 золотому сечению.
  • Число L(m) будет простым только для простых индексов (исключение m=4). Например, число 233 простое и m=13 тоже простое (но не наоборот).
  • В числах Фибоначчи прояляется закономерность: с периодом 60 повторяются последние цифры, а пара последних цифр чисел последовательна в цикле с периодом триста.
  • Числа Фибоначчи — это также суммы чисел по «мелким» диагоналям знаменитого треугольника Паскаля, как одно из его многочисленных свойств.
  • Вклад других стран

    Основателем алгебры считается Ала-Хорезми, но особого развития она у арабов она получила. Однако именно они изобрели на своем языке арабские цифры, которые применяются в современном мире. Существенный вклад в развитие науки внесли представители и других стран. Кратко их достижения выражаются в следующем:

  • Индия. Вклад индийцев заключается в том, что они ввели такое понятие, как ноль, который стал впоследствии использоваться арабами и европейцами.
  • Китай. Эта страна внесла весомый вклад в раздел математики тем, что научилась проводить операции с отрицательными и иррациональными числами.
  • Вавилон. Хоть местные математики не умели обращаться с отрицательными числами, они научились решать квадратные уравнения.
  • Таким образом, в развитии этого раздела принимали участие многие страны мира. Их исследовательские работы вносили общий вклад в становление алгебры.

    Под конец XVI века эта часть математики снова возвращается в Европу, откуда она взяла свое начало. Этому способствовало купечество, разъезжающее по всему свету и знакомившееся с математикой. Дальнейший толчок произошел после распада феодальной системы. Страны, ставшие на капиталистический путь развития, уже не могли обойтись без алгебраических действий.

    Алгебра относится к наиболее интересным наукам, которые изучаются учениками школ и студентами вузов. Учащиеся постоянно пишут рефераты и готовят доклады на различные темы, относящиеся к этому разделу математики. В дальнейшем они зачитывают свои работы на уроках.

    Задача с кроликами

    На подсчет элементов забавной числовой последовательности Фибоначчи натолкнули плодовитые кролики. Ученый не изучает явление со всех сторон сразу. Определяются начальные характерные условия, ограничивается круг основных влияющих факторов, а незначительные опускаются, допускаются поправки. Так составили знаменитую задачу про биологически нереальное размножение кроликов, суть излагается не дословно.

    В доме появилась пара маленьких крольчат, мальчик и девочка. Нужно определить, сколько пар зверушек будет через 12 месяцев. Надо учесть, что в первый месяц жизни они бездетны. Пара малюток первых (самка и самец) прибавляется во 2-ой месяц, а уже дальше парочки длинноухих ежемесячно нарождаются. Кролики не умирают, а превышающая плодовитость не учитывается.

    Для упрощения обозначения можно принять месяц – м., число пар кроликов – это =1. Решается последовательно по шагам, пока математик не подметил закономерности чисел:

    • 1 м. пара маленьких=1.
    • 2 м. только первая пара= 1.
    • 3 м. парочка дала приплод 1 пару=2.
    • 4 м. старые двое рождают новую двойню, второй парочке еще рановато=3.
    • 5 м. первая парочка приносит ещё пару, вторая плодит новую двойню, третьей паре рано=5.
    • 6 м. 5 3=8, 55 34=89(11), 89 55=144(12)

    По ежемесячным результатам получились числа Фибоначчи. После 12 месяцев расплодится длинноухих 144(12м.) 89(11м.)=233 пары. Получилась первичная модель экспоненциального роста кроличьей популяции. Сформулированная и решенная задача считается основным вкладом Фибоначчи в развитие комбинаторики.

    Общие сведения

    Многие начинающие математики часто путают два понятия: числовые и алгебраические выражения. Между ними существует разница, которая заключается в определениях. Числовое выражение — вид математического тождества, состоящего только из чисел, скобок и знаков арифметических операций.

    Алгебраическим называется совокупность переменных и числовых выражений, имеющих логическое завершение. Объяснение смысла логики выражения имеет такой вид: совокупность чисел и переменных, связанных между собой арифметическими операциями умножения, деления, сложения и вычитания. Например, выражение «5t-2/3» — алгебраическое, поскольку в нем присутствует переменная «t».

    Математическим выражением не является набор символов, не имеющий логического завершения. Например, 234±4678 * — обыкновенный ряд, который можно составить из цифр и знаков арифметических операций. Последние имеют следующие обозначения:

  • * — произведение.
  • / — деление.
  • — сложение.
  • — — вычитание.
  • Произведение — вид арифметической операции, позволяющей умножить одну величину на другую. Она состоит из трех основных элементов. К ним относятся: I множитель, II множитель и произведение (результат). Математики утверждают, что для сокращения сложения применяется умножение, то есть 3 3 3 3 3 3=3*6=18. Если рассчитать оба выражения, то они будут равными между собой.

    Деление — арифметическая операция, используемая для поиска сомножителей искомого числа. Она состоит из следующих обязательных компонентов: делимого, делителя и частного. Первый элемент — составное значение, второй — один из множителей первого, а частное — результат операции деления.

    Сложение — простейшая арифметическая операция, составление которой осуществляется минимум из трех элементов и позволяющая увеличивать искомую величину на определенное значение. Компоненты имеют следующие названия: два слагаемых и результат, который называется суммой.

    Рефераты:  Реферат: Общие подходы к разработке технологии переработки углеводородного сырья -

    Вычитание — операция, необходимая для уменьшения искомого числа на заданную величину. Она состоит из трех компонентов: уменьшаемого, вычитаемого и разности. Первое — числовое значение, от которого отнимается вычитаемое.

    Однако у каждой операции есть определенный приоритет.

    Популярные сегодня темы

    • Откуда появились числа

      Невозможно представить нашу жизнь без символов, которые помогают дать характеристику чего-либо с помощью количественного выражения. То есть, чтобы присвоить предмету номер, в настоящее время

    • Профессия электрик

      Существует множество профессий, без которых невозможно жить в современном мире. Одной из них является профессия электрика.

    • Белка

      Белка – маленький зверек, который большую часть своей жизни проводит на высоте, передвигаясь по кронам деревьев и веткам. Иногда спускается для того, чтобы найти пищу, упавшую на землю

    • Полимеры

      Вещества, которые имеют цепочки с множеством звеньев, называют полимерами. Полимеры бывают органические и неорганические, а также кристаллические и аморфные.

    • Созвездие Девы

      На ночном небесном своде среди множества звёзд, между созвездиями Льва и Весов можно отыскать созвездие Девы. Это древнегреческая богиня справедливости Дике — дочка верховного олимпийского бо

    • Дымковская игрушка

      Одним из самых старинных промыслов в России считают дымковскую игрушку. Возник он на рубеже 15-16 веков недалеко от небольшого городка Вятки, в слободе Дымково. Там всегда весело и дружно отм

    Презентация на тему: «история возникновения алгебры» | образовательная социальная сеть

    Слайд 1

    История возникновения алгебры.

    Слайд 2

    Алгебра, вместе с арифметикой, есть наука о числах и через посредство чисел – о величинах вообще. Не занимаясь изучением свойств каких-нибудь определенных, конкретных величин, обе эти науки исследуют свойства отвлеченных величин, как таковых, независимо от того, к каким конкретным приложениям они способны. Различие между арифметикой и алгеброй состоит в том, что первая наука исследует свойства данных, определенных величин, между тем как алгебра занимается изучением общих величин, значение которых может быть произвольное, а, следовательно, алгебра изучает только те свойства величин, которые общи всем величинам, независимо от их значений. Таким образом, алгебра есть обобщенная арифметика. Это подало повод Ньютону назвать свой трактат об алгебре «Общая арифметика». Гамильтон, полагая, что подобно тому, как геометрия изучает свойства пространства, алгебра изучает свойства времени, назвал алгебру «Наукою чистого времени» – название, которое Морган предлагал изменить на «Исчисление последовательности». Однако такие определения не выражают ни существенных свойств алгебры, ни исторического ее развития. Алгебру можно определить как «науку о количественных соотношениях».

    Слайд 3

    Деление алгебры В настоящее время, отчасти из педагогических соображений, отчасти вследствие исторического развития этой науки, алгебру делят на низшую и высшую. К низшей алгебре относят теорию простейших арифметических операций над алгебраическими выражениями, решение уравнений первой и второй степени, теорию степеней и корней, теорию логарифмов и комбинаторику. К высшей алгебре относят теорию уравнений произвольных степеней, теорию исключений, теорию симметрических функций, теорию подстановок, и, наконец, изложение различных частных способов отделения корней уравнений, определения числа вещественных или мнимых корней данного уравнения с численными коэффициентами, и приближённое или аналитическое (когда это возможно) уравнений произвольных степеней.

    Слайд 4

    Происхождение термина «алгебра» Происхождение самого слова «алгебра» не вполне выяснено. По мнению большинства исследователей этого вопроса, слово «алгебра» произошло от названия труда арабского математика Ал-Хорезми (от самого имени которого согласно большинству исследователей происходит популярное слово «алгоритм») » Аль-джабр-аль-мукабалла «, то есть «учение о перестановках, отношениях и решениях», но некоторые авторы производят слово «алгебра» от имени математика Гебера , однако само существование такого математика подвержено сомнению.

    Слайд 5

    Первое дошедшее до нас сочинение, содержащее исследование алгебраических вопросов, есть трактат Диофанта, жившего в середине IV века. В этом трактате мы встречаем, например, правило знаков (минус на минус дает плюс), исследование степеней чисел, и решение множества неопределенных вопросов, которые в настоящее время относятся к теории чисел. Из 13 книг, составлявших полное сочинение Диофанта, до нас дошло только 6, в которых решаются уже довольно трудные алгебраические задачи. Нам неизвестно о каких бы то ни было иных сочинениях об алгебре в древности, кроме утерянного сочинения знаменитой дочери Теона , Гипатии .

    Слайд 6

    Алгебра арабов В Европе алгебра снова появляется только в эпоху Возрождения, и именно от арабов. Каким образом арабы дошли до тех истин, которые мы находим в их сочинениях, дошедших до нас в большом количестве, – неизвестно. Они могли быть знакомы с трактатами греков, или, как думают некоторые, получить свои знания из Индии. Сами арабы приписывали изобретение алгебры. Магоммеду-бен-Муза , жившему около середины IХ-го века в царствованние халифа Аль-Мамуна . Во всяком случае, греческие авторы были известны арабам, которые собирали древние сочинения по всем отраслям наук. Магоммед-Абульвефа перевел и комментировал сочинения Диофанта и других предшествовавших ему математиков (в Х веке). Но ни он, ни другие арабские математики не внесли много нового, своего в алгебру. Они изучали ее, но не совершенствовали.

    Слайд 7

    Возрождение алгебры в Европе Первым сочинением, появившимся в Европе после продолжительного пробела со времен Диофанта, считается трактат итальянского купца Леонардо, который, путешествуя по своим коммерческим делам на Востоке, ознакомился там с индийскими (ныне называемыми арабскими) цифрами, и с арифметикой и алгеброй арабов. По возвращении в Италию, он написал сочинение, охватывающее одновременно арифметику и алгебру и отчасти геометрию. Однако сочинение это не имело большого значения в истории науки, ибо осталось мало известным и было открыто вновь только в середине 18-го века в одной Флорентийской библиотеке. Между тем сочинения арабов стали проникать в Европу и переводиться на европейские языки. Известно, например, что старейшее арабское сочинение об алгебре Магоммеда-бен-Музы было переведено на итальянский язык, но перевод этот не сохранился до нашего времени. Первым известным печатным трактатом об алгебре является » Summa de Arithmetica , Geometria , Proportioni et Proportionalita «, написанное итальянцем Лукасом дэ Бурго . Первое издание его вышло в 1494 г. и второе в 1523 г. Оно указывает нам, в каком состоянии находилась алгебра в начале XVI века в Европе. Здесь нельзя видеть больших успехов по сравнению с тем, что уже было известно арабам или Диофанту. Кроме решения отдельных частных вопросов высшей арифметики, только уравнения первой к второй степени решаются автором, и притом вследствие отсутствия символического обозначения, все задачи и способы их решения приходится излагать словами, чрезвычайно пространно. Наконец нет общих решений даже квадратного уравнения, а отдельные случаи рассматриваются отдельно, и для каждого случая выводится особый метод решения, так что самая существенная черта современной А. – общность даваемых ею решений – еще совершенно отсутствует в начале XVI века.

    Рефераты:  Религия в системе культуры

    Слайд 8

    Развитие алгебры в странах Европы В Германии первое сочинение об алгебре принадлежит Христиану Рудольфу из Иayepa , и появилось впервые в 1524 г. а затем вновь издано Стифелем в 1571 г. Сам Стифель и Шейбль , независимо от итальянских математиков, разработали некоторые алгебраические вопросы. В Англии первый трактат об алгебре принадлежит Роберту Рекорду, преподавателю математики и медицины в Кембридже. Его сочинение об алгебре называется » The Whetstone of Wit «. Здесь впервые вводится знак равенства (=). Во Франции в 1558 году появилось первое сочинение об алгебре, принадлежащее Пелетариусу ; в Голландии Стевин в 1585 г. не только изложил исследования, известные уже до него, но и ввел некоторые усовершенствования в алгебру. Например, он уже обозначал неизвестные. Правда, для обозначения неизвестных он использовал всего лишь числа, обведенные в кружочек. Так первая неизвестная (теперь обычно обозначаемая x ) у него обозначалась обведенной в кружочек единицей, вторая – обведенной двойкой, и так далее. 1

    Слайд 9

    Громадные успехи сделала алгебра после сочинений Виета, который первый рассмотрел общие свойства для уравнений произвольных степеней и показал способы для приблизительного нахождения корней каких бы то ни было алгебраических уравнений. Он же первый обозначил величины, входящие в уравнения буквами, и тем придал алгебре ту общность, которая составляет характеристическую особенность алгебраических исследований нового времени. Он же подошел весьма близко к открытию формулы бинома, найденной впоследствии Ньютоном, и, наконец, в его сочинениях можно даже встретить разложение отношения стороны квадрата вписанного в круг к дуге круга, выраженное в виде бесконечного произведения. Фламандец Албер Жирар или Жерар , трактат которого об алгебре появился в 1629 г. первый ввел понятие мнимых величин в науку. Агличанин Гарриот показал, что всякое уравнение может рассматриваться, как произведение некоторого числа множителей первого порядка, и ввел в употребление знаки > и <. Его труды были опубликованы в 1631 г. Варнером .

    Слайд 10

    Приобретение алгеброй законченного вида После этих сравнительно незначительных успехов алгебра вдруг движется быстрыми шагами вперед, благодаря работам Декарта, Фермата, Валлиса и в особенности Ньютона, не говоря уже о множестве математиков менее знаменитых, но все же подвинувших совокупными усилиями алгебру в течение сравнительно короткого времени на значительную степень выше их предшественников и придавших ей ту форму, которую она сохранила до настоящего времени. Нет возможности в этом кратком очерке обозреть успехи, которым алгебра обязана названным математикам. Мы вкратце только упомянем о главных пунктах дальнейшего быстрого совершенствования алгебры, шедшего шаг за шагом за совершенствованием иных отраслей математики вообще. С этого времени также алгебра входит в более тесную связь с геометрией, после разработки Декартом аналитической геометрии, а также с анализом бесконечно малых, изобретенным Ньютоном и Лейбницем. В XVIII столетии классические труды Эйлера и Лагранжа, изложенные в » Novi Commentarii » первого и в » Traite de la resolution des equations » второго, довели алгебру до высокой степени совершенства. Позже работы Гаусса, Абеля, Фурье, Галуа, Коши, а затем Кейли , Сильвестера , Кронекера, Эрмита и др. создали новые точки зрения на важнейшие алгебраические вопросы и придали алгебре высокую степень изящества и простоты.

    Слайд 11

    В 1505 году Сципион Феррео впервые решил один частный случай кубического уравнения. Это решение однако не было им опубликовано, но было сообщено одному ученику – Флориде. Последний, находясь в 1535 году в Венеции, вызвал на состязание уже известного в то время математика Тарталью из Брешии и предложил ему несколько вопросов, для разрешения которых нужно было уметь решать уравнения третьей степени. Но Тарталья уже нашел раньше сам решение таких уравнений и, мало того, не только одного того частного случая, который был решен Феррео , но и двух других частных случаев. Тарталья принял вызов и сам предложил Флориде также свои задачи. Результатом состязания было полное поражение Флориде. Тарталья решил предложенные ему задачи в продолжение двух часов, между тем как Флориде не мог решить ни одной задачи, предложенной ему его противником (число предложенных с обеих сторон задач было 30). Тарталья продолжал, подобно Феррео , скрывать свое открытие, которое очень интересовало Кардано , профессора математики и физики в Милане. Последний готовил к печати обширное сочинение об арифметике, алгебре и геометрии, в котором он хотел дать также решение уравнений 3-ей степени.

    Слайд 12

    Но Тарталья отказывался сообщить ему о своем способе. Только когда Кардано поклялся над Евангелием и дал честное слово дворянина, что он не откроет способа Тартальи для решения уравнений и запишет его в виде непонятной анаграммы, Тарталья согласился, после долгих колебаний, раскрыть свою тайну любопытному математику и показал ему правила решений кубических уравнений, изложенные в стихах, довольно туманно. Остроумный Кардано не только понял эти правила в туманном изложении Тартальи, но и нашел доказательства для них. Не взирая, однако, на данное им обещание, он опубликовал способ Тартальи, и способ этот известен до сих пор под именем «формулы Кардано «.

    Слайд 13

    Вскоре было открыто и решение уравнений четвертой степени. Один итальянский математик предложил задачу, для решения которой известные до той поры правила были недостаточны, а требовалось умение решать биквадратные уравнения. Большинство математиков считало эту задачу неразрешимою. Но Кардано предложил ее своему ученику Луиджи Феррари, который не только решил задачу, но и нашел способ решать уравнения четвертой степени вообще, сводя их к уравнениям третьей степени. В сочинении Тартальи, напечатанном в 1546 году, мы также находим изложение способа решать не только уравнения первой и второй степени, но и кубические уравнения, причем рассказывается инцидент между автором и Кардано , описанный выше. Сочинение Бомбелли, вышедшее в 1572 г., интересно в том отношении, что рассматривает так называемый неприводимый случай кубического уравнения, который приводил в смущение Кардано , не сумевшего решить его посредством своего правила, а также указывает на связь этого случая с классическою задачей о трисекции угла.

    Рефераты:  Управление внешнеэкономической деятельностью

    Слайд 16

    Конец.

    Приоритет операций

    При вычислении математических выражений существует определенный приоритет арифметических операций. Сначала выполняются умножение и деление. Они обладают максимальной величиной приоритета. Иногда для оптимизации вычислений можно выполнять действие над числами или переменными в любой последовательности, то есть пример «2*26/13» можно решить двумя способами:

  • (2*26)/13=52/13=4.
  • 2*(26/13)=4.
  • В первом случае операция займет больше ресурсов: сначала требуется 2 умножить на 26, высчитать результат, а затем его поделить на 13. Это не слишком удобно. Однако для оптимизации вычислений рекомендуется применять второй способ, поскольку особого труда не составляет 26 разделить на 13, а затем результат перемножить с двойкой.

    Сложение и вычитание имеют также одинаковый уровень приоритета. Можно сначала для удобства выполнить сложение, а затем вычитание или наоборот. Специалисты рекомендуют руководствоваться важным принципом: вычисления должны быть максимально упрощены. Чтобы задать приоритет какому-либо математическому действию, необходимо взять часть выражения в скобки (сгруппировать). В результате этого первой будет выполняться операция, находящаяся в скобках.

    Для примера нужно найти значение выражения: 2*2−2 (3−2)*7/14−25/5. Решать его правильно по такой методике с учетом приоритета:

  • 3−2=1.
  • 1*2*7/14=1.
  • 2*2=4.
  • 25/5=5.
  • 4−1−5=2.
  • Если не учитывать приоритет выполнения операций, то найти значение числового выражения можно по такой схеме:

  • 2*2=4.
  • 4−2=2.
  • 2*1=2.
  • 2*7/14=1.
  • 1−25=24.
  • 24/5=4,8.
  • Если сравнить два результата, то они не совпадают. На основании этого можно сделать вывод, что приоритет имеет значение при выполнении вычислений и нарушать его нельзя, поскольку исчезнет логика выражения. Однако не только скобки позволяют установить очередность операций. Существуют некоторые исключения.

    Реферат найти история появления алгебры как науки

  • Матрицы, определители, системы линейных уравнений. Элементарные преобразования матриц, ранг матрицы. Матричная запись системы линейных уравнений и ее матричное решение. Элементы векторной алгебры и аналитической геометрии. Смешанное произведение векторов.

    учебное пособие, добавлен 25.11.2021

  • Нахождение косинуса угла между векторами при заданных условиях. Схематический чертеж перпендикулярных плоскостей. Приведение к каноническому виду уравнения линий второго порядка. Решение системы линейных уравнений матричным методом и методом Гаусса.

    контрольная работа, добавлен 11.06.2021

  • Исторические сведения о зарождении уравнения. Первоначальное значение термина алгебра. Зарождение искусства решения уравнений. Значительный вклад в развитие языка алгебры Ф. Виета. Усовершенствование теории уравнений с применением изобретенных символов.

    контрольная работа, добавлен 29.01.2021

  • Математическое понятие корня n-ой степени. Расчет арифметического корня из числа. История возникновения квадратного корня и термина «радикал». Решение уравнений, используя график функции. Упрощение выражений с применением способа замены переменной.

    конспект урока, добавлен 28.10.2021

  • Греки классического периода — родоначальники математики. Особенности греческой системы исчисления. Величайшие древнегреческие математики. Развитие математики в эпоху Средневековья и Возрождения. История становления современной математической науки.

    реферат, добавлен 15.10.2021

  • Определение линейной алгебры и ее основных свойств. Описание формирования базисов из логических переменных. Характеристика процесса логического синтеза двузначных и многозначных цифровых структур в линейной алгебре. Пример разложения логических функций.

    статья, добавлен 29.07.2021

  • Понятие алгебраического уравнения четвертой степени, история его решения. Пример решения биквадратного и возвратного уравнений четвертой степени. Решение Декарта—Эйлера. Анализ схемы метода Феррари, разложения на множители и кубическая резольвента.

    доклад, добавлен 04.10.2021

  • Особенность выполнения различных операций с матрицами. Исследование скалярного и векторного произведения векторов. Применение матричных функций для решения задач линейной алгебры в MathCAD. Анализ однородных и неоднородных систем линейных уравнений.

    презентация, добавлен 08.04.2021

  • Изучение матриц и линейных уравнений как основных элементов линейной алгебры. Описание элементов векторной алгебры. Исследование основ аналитической геометрии на плоскости и в пространстве. Составляющие производных, функций и математического анализа.

    курс лекций, добавлен 23.09.2021

  • Особенности определения суммы матриц. Вычисление определителя третьего порядка. Решение системы линейных уравнений методом Гаусса. Оценка косинуса угла между векторами и плоскостями при известных заданных координатах. Расчет объема тетраэдра и его высоты.

    контрольная работа, добавлен 14.11.2021

  • Сообщение (не длинное) об истории возникновения алгебры. — школьные

    Слово «алгебра» впервые встречается в IX веке в работе хорезмийского математика и астронома Мухамеда бен Муса ал-Хорезми (783-850).

    Одна из его работ — «Хисаб ал-джебр вал-мукабала» — была посвящена составлению и решению алгебраических уравнений. Именно от слова «ал-джебр» и произошло слово «алгебра».

    Само действие «ал-джебр» обозначает «восстановление» и представляет собой перенос отрицательных членов из одной части уравнения в другую часть уравнения, чтобы в обеих частях были только положительные члены (ученые того времени не признавали отрицательных чисел).

    Говоря об истории алгебры, нужно отметить ее буквенную символику, которая вводилась постепенно в течение долгого времени. Например, в  XI в. арабский математик ал-Карги ввёл особые знаки для изображения алгебраических величин, именно он обозначил неизвестное число специальным знаком (см. рис.).

    В Европе буквенные символы начали вводить в XV–XVI в.в. Сначала ими обозначали только неизвестное, а потом уже и знаков действий.  В XVI веке Франсуа Виет обозначил буквой N неизвестное число.

    Свой вклад в создание алгебры внесли немецкий ученый Лейбниц, английский математик и физик Ньютон и французский математик Декарт.
    В России первые упоминания об алгебре относятся к 1703 г. и встречаются  в «Арифметике» Л. Ф. Магницкого.

    Оцените статью
    Реферат Зона
    Добавить комментарий