Реферат: Сводка и группировка статистических материалов –

Реферат: Сводка и группировка статистических материалов - Реферат

3 Количественные и качественные группировочные признаки

Группировочные признаки могут отражать качественную или количественную сторону изучаемого явления. При распределении данных по количественным признакам (возрасту правонарушителей, числу лиц в организованной преступной группе; количеству судимостей, срокам лишения свободы и др.) необходимо выделить общее количество групп и определить разницу между максимальным и минимальным значениями признака (интервала) в каждой группе.

Например, при группировке правонарушителей по возрасту, беря за основу определенные качественно-возрастные особенности, сочетаемые с уголовно-правовыми или уголовно-процессуальными положениями, можно наметить несколько групп с разными интервалами:

1) от 14 до 16 лет (малолетняя). Лица этого возраста несут ограниченную уголовную ответственность по видам деяний и мерам наказания, Расследование дел в отношении данных лиц имеет множество процессуальных особенностей;

2) от 16 до 18 лет (несовершеннолетняя). Эти лица несут уголовную ответственность за любые уголовно-наказуемые деяния, но для них есть ряд уголовно-правовых и уголовно-процессуальных особенностей;

3) от 18 до 25 лет (молодежная). При расследовании дел в отношении данных лиц нет никаких уголовно-правовых и уголовно-процессуальных особенностей, но с криминологической точки зрения это наиболее активная в криминальном отношении возрастная группа. Она имеет самый высокий коэффициент поражаемости преступностью;

4) от 25 до 30 лет и т.д. Аналогичные обоснования необходимы при определении интервалов и по другим количественным группировочным признакам.

Следует, однако, иметь в виду, что разные интервалы, помогая выявить одни качественно-количественные особенности, могут затушевывать другие. Так, нередко наряду с названными интервалами выделяется группа 30—49 лет, на которую падает наиболее высокий удельный вес совершенных преступлений, хотя преступная активность после 30 лет (если рассматривать по отдельным годам) падает.

В сопоставлении разных интервалов этого не видно, так как интервал 30—49 лет включает двадцать возрастных групп, 25—29 — пять, 19—24 — шесть, 16—18 — три, 14—15 — два. Поэтому в целях выявления долевого распределения правонарушителей по возрастным группам надо использовать равные интервалы, а еще лучше (если позволяют данные) разделить их строго по годам.

Статистические группировки, отражающие качественные (атрибутивные) признаки (степень общественной опасности и тяжести преступлений, вид деяний, содержание мотивации преступного поведения, социальное положение правонарушителей, условия нравственного формирования личности в семье, характер гражданского иска, вид гражданско-правового деликта и т.д.) широко распространены в социально-правовых изучениях.

Официальные статистические данные правоохранительных органов группируются по качественным и количественным признакам уголовно-правового (по главам и статьям уголовного закона, формам вины, категориям тяжести деяния, видам и размерам уголовного наказания) и криминологического характера (сферам социальной жизни, причинам, мотивам, обстоятельствам совершения преступления, социально-демографическим признакам правонарушителей и др.).

В данном случае группировочные признаки заложены в соответствующих формах статистической отчетности органов внутренних дел, налоговой полиции, таможенной службы, прокуратуры, суда. Упорядоченное распределение единиц совокупности по качественным или количественным признакам представляет собой соответственно атрибутивные или вариационные ряды распределения, которые и лежат в основе различных видов статистических группировок.

В криминологической литературе выделяются еще и качественно-количественные или “полуколичественные” признаки”, по которым обладающие ими объекты могут сравниваться в понятиях “больше — меньше”. “Полуколичественным” признаком, например, является общественная опасность, отраженная в категориях преступлений (ст. 15 УК РФ).

По этому признаку все преступления, исходя из их общественной опасности (качественный признак) и максимальных мер наказания в годах лишения свободы (количественный признак), делятся на деяния небольшой тяжести, за совершение которых максимальное наказание не превышает двух лет лишения свободы; преступления средней тяжести — пять лет; тяжкие — 10 лет; особо тяжкие — свыше 10 лет и более строгое наказание.

Такой прием группировки особо распространен при анкетировании граждан, когда есть необходимость ранжировать их ответы методом суммарных оценок (шкала Лайкерта) по пятибалльной системе. В этих случаях при формулировании вопросов анкеты одновременно дается веер закрытых ответов, из которых делает выбор анкетируемый:

1 — “полностью не согласен”, 2 — “не согласен”, 3 — “нейтрален”, 4 —-“согласен”, 5 — “полностью согласен”.

Сравнение объектов по “полуколичественному” признаку позволяет зафиксировать лишь тот факт, что у одних из опрошенных этот признак выражен сильнее, чем у других. Вопрос о том, насколько сильнее он выражен, остается при этом открытым. Тем не менее, такой способ группировки позволяет выявить некоторые качественно-количественные сдвиги в структуре изучаемых явлений.

Табличный способ изложения статистических показателей

Результаты статистической сводки и группировки, как правило, помещаются в статистических таблицах и графиках, представляющих собой рациональное, наглядное, компактное и систематизированное изложение статистических показателей.

С технической стороны статистическая таблица представляет собой ряд взаимно пересекающихся горизонтальных и вертикальных линий. Горизонтальные линии таблицы именуются строками, а вертикальные — графами (столбцами, колонками). Каждая строка и графа имеют свое наименование (заголовок), соответствующее содержание показателей, помещенных в таблице, а таблица в целом имеет общее наименование, определяющее ее содержание.

Любая правильно составленная статистическая таблица содержит два основных элемента: подлежащее и сказуемое. Подлежащее — это объект изучения или перечень единиц совокупности (их групп), которые характеризуются в таблице. Сказуемое — это перечень показателей, которыми характеризуется подлежащее.

При разработке таблиц в процессе сводки и группировки статистических показателей следует иметь в виду, чтобы это не было простым собиранием данных, размещенных в произвольном порядке. Каждая таблица должна заключать в себе аналитическое изложение результатов наблюдения, чтобы в последовательном ряду строк и граф развертывалась цифровая картина тех явлений, которые подлежат изучению и анализу.

Таблицы бывают простые, групповые и комбинационные. Простые таблицы — это перечневые, территориальные и хронологические. Перечневые простые таблицы имеют в подлежащем элементарный перечень однородных признаков, составляющих единый объект изучения. Например, дается перечень ступеней образования: начальное, среднее, высшее.

В подлежащем простой территориальной таблицы приводятся территории районов, городов, областей, которые в последующих графах характеризуются теми или иными количественными показателями, например по уровню регистрации рождений, смертей, браков или разводов. Хронологическими простыми называются таблицы, в подлежащем которых даны периоды времени (годы, кварталы, месяцы).

Деление простых таблиц на перечисленные виды очень условно, поскольку эти виды могут сочетаться между собой по-разному, образуя перечневую хронологическую таблицу или территориальную хронологическую. Во всех простых таблицах сказуемое, как правило, одно.

В групповых таблицах подлежащее подразделяется на отдельные группы по какому—то одному признаку. Например, гражданские дела, рассмотренные судом, делятся на трудовые, жилищные, семейные, имущественные, финансовые, которые в свою очередь могут распределяться по результатам рассмотрения дел (иск удовлетворен, в иске отказано, иск оставлен без рассмотрения) и т.д. Сказуемое групповых таблиц также может быть сложным, отражающим различные стороны подлежащего.

Рефераты:  Топик по английскому The Problem of Smoking

Комбинационные таблицы характеризуют юридически значимые явления через многие признаки и свойства, отраженные как в подлежащем, так и в сказуемом.

При всей сложности качественно-количественных характеристик того или иного явления они, как правило, взаимосвязаны между собой, поскольку отражают одно и то же явление, только с разных сторон. Типичным примером комбинационных таблиц высокой сложности могут быть формы отчетов по государственной или ведомственной отчетности.

Таблица должна быть оптимальной по своему размеру. С одной стороны, содержать все необходимые показатели, с другой — не быть перегруженной избыточной статистической информацией.

Таблица должна иметь четкое общее название, а также названия подлежащего и сказуемого, их групп и разделов. Таблицы без названий понимаются с трудом. Кроме того, в них должны быть указаны единицы измерения, территория, период времени и другие необходимые сведения, привязывающие таблицу к конкретному содержанию, объему данных, времени и пространству.

Строки подлежащего и графы сказуемого могут размещаться от частного к общему или наоборот. Итоговые показатели обычно помещаются на последней строке или графе. Однако, исходя из задач, решаемых таблицей, итоговые показатели могут быть приведены и в первой строке.

Если таблица большая и располагается на нескольких листах, ее строки и графы могут нумероваться (обозначаться) порядковыми числами или буквами по алфавиту.

Все приводимые статистические данные должны иметь одинаковую степень точности (целые числа, целые числа с десятыми или сотыми показателями). Есть статистические сведения (например, среднегодовые темпы прироста (снижения) преступности, судимости или других явлений), которые традиционно даются с точностью до сотых долей.

При отсутствии данных, за какой — то год или по какому-то параметру вместо соответствующих цифр обычно ставится многоточие или помета “нет данных”. Если отсутствие, каких — то данных является объективным фактом (например, при изложении сведений по отдельным видам преступлений, которых до принятия УК 1996г. в уголовном законодательстве не было), то вместо соответствующих данных ставится прочерк (тире).

Все сомнения, которые могут возникнуть при чтении таблицы должны быть упреждены в примечаниях к ней. Если таких объяснений не будет, таблица может ввести читающего в заблуждение.

Графический способ изложения статистических показателей

Статистические таблицы высоко информативны и в определенной мере наглядны. Но проникновение в их цифровое содержание требует времени, вдумчивой работы с цифрами и серьезного сравнительного анализа. Большей наглядностью обладают графики, составленные на основе табличных данных.

Графиком в статистике называют наглядное изображение статистических величин при помощи геометрических линий и фигур (диаграмм) или географических картосхем (картограмм). Грамотно подготовленный график доходчив, понятен и аналитичен. В отличие от лежащей в его основе таблицы, он дает предметную обобщающую картину состояния изучаемого явления, позволяет практически “с ходу” заметить его особенности, содержащиеся в многочисленных количественных показателях, увидеть тенденции и закономерности его изменения, выявить взаимосвязи с другими явлениями и процессами и даже предполагать его возможное развитие в будущем.

Как и таблица, график имеет ряд признаков или элементов, знание которых позволяет грамотно построить его вручную или машинным способом.

Основа любого графика — его геометрические знаки (точки, линии, фигуры), с помощью которых изображаются статистические величины. Графические компьютерные программы имеют большие наборы этих знаков (одинарных и двойных, сплошных и прерывистых линий различной толщины и цвета, иных обозначений и символов), позволяющих изображать графические фигуры так, чтобы они легко отличались одна от другой.

Следующие элементы графика — его пространственные ориентиры, определяющие размещение геометрических знаков на графике. Пространственные ориентиры задаются в виде координатных сеток. В статистических графиках обычно применяется система прямоугольных координат в двумерном или трехмерном изображении.

В картограммах средствами пространственной ориентации являются либо географические ориентиры (контуры дорог, рек, морей, лесов, населенных пунктов), либо административные или государственные границы. С пространственными ориентирами тесно связаны масштабные, которые дают графическим изображениям количественную определенность.

Масштабные ориентиры определяются шкалами графика. В этом случае масштаб выполняет роль условной меры перевода количественных величин в графические. В статистических графиках, как правило, применяются прямолинейные масштабные шкалы. В связи с этим на осях абсцисс и ординат в условных масштабах откладываются соответствующие единицы измерения.

В наших условиях это абсолютные или относительные (проценты, коэффициенты и др.) числа преступлений, правонарушителей, осужденных, заключенных, гражданских или уголовных дел, истцов, ответчиков или лет, месяцев, административно-территориальных образований и т.д.

В графиках, построенных по форме круговых и секторных диаграмм, применяются кривоугольные шкалы. И прямоугольные, и кривоугольные шкалы могут быть равномерными и неравномерными. В юридической статистике применяются равномерные шкалы, в которых отрезки пропорциональны числам.

Важный элемент графика — его поле, т.е. то место, где расположены геометрические знаки. В зависимости от целей и задач графика это поле может быть чистым или заштрихованным. Последний метод часто применятся при подготовке графиков с помощью ЭВМ, что позволяет более рельефно выделить те или иные графические образы.

Размер поля зависит от назначения графика. Его форма может быть в виде квадрата или прямоугольника. Как и таблица, график должен иметь заголовки и словесные пояснения. Название графика чаще всего соответствует названию таблицы, на основе которой он построен.

Он обязательно должен содержать наименования масштабных шкал: название отложенных на них единиц измерения (преступность в абсолютных и относительных числах — в миллионах, тысячах, коэффициентах, процентах и т.д.) ц другие необходимые пояснения. В зависимости от целей графика, его количественной базы и применяемых геометрических знаков графики могут быть точечными (совокупность точек), линейными, столбиковыми, полосовыми, квадратными, круговыми и т.д.

Иногда в юридических графиках используются рисунки отдельных предметов (пистолеты, автомашины) или силуэтов (например, полицейских) для обозначения соответствующей статистической картины. Такие графики называют фигурными. Линейные графики имеют самое широкое распространение в уголовно-правовой и криминологической статистике для обозначения динамики преступности, выявленных правонарушителей, осужденных, заключенных, оправданных и т.д.

Рис. 1. Динамика преступлений и выявленных лиц (1956—1991 гг.)

Столбиковые диаграммы — это наглядные графические изображения для сравнения значений статистических показателей, характеризующих разные объекты или одни и те же объекты в разные годы. Столбиковые диаграммы строятся в системе прямоугольных координат. Основания столбиков обычно берутся одинакового размера, размещенных на оси абсцисс, а высота столбика отражает значение показателя.

Каждый столбик посвящается одному показателю, поэтому их столько, сколько показателей. Столбики могут располагаться между собой через какое-то равное расстояние или вплотную друг к другу. Кроме шкалы ординат, которая градуируется в соответствующем масштабе, значение показателя может отмечаться на самом столбике.

Полосовые диаграммы — те же столбиковые, только столбцы в них расположены не вертикально, а горизонтально. Поэтому их возможности практически те же, что и у столбиковых диаграмм, но они более наглядны при сопоставлении большого количества показателей.

Рефераты:  Сводка и группировка статистических данных

Картограммы — это средства наглядного изображения фактических данных, которыми характеризуются отдельные районы, города, области и субъекты Федерации. Это может быть картограмма интенсивности преступности, где ее уровень в каждом регионе имеет свою окраску или штриховку.

Для составления картограмм преступности, как, впрочем, и любой другой диаграммы с помощью компьютеров, необходимо соответствующее программное обеспечение, которое в настоящее время имеется в достаточном количестве в нашей стране и постоянно совершенствуется.

Картограммы нередко сочетаются с фигурными диаграммами, когда те или иные преступления на той или иной территории обозначаются фигурами: убийство из огнестрельного оружия (пистолет), угон автомашины (автомашина) и т.д. Такие диаграммы именуются пиктограммами.

Компьютерная графика дает возможность строить более сложные и наглядные графики и диаграммы, позволяющие в максимально сжатом виде понятно и доходчиво показать реальное положение дел, которое трудом понимается при изучении таблиц или отдельных статистических показателей.

Статистика

Сводка статистических данных

Москва 2005г.

Содержание

Сводка статистических данных

Ошибки выборки

Список литературы

Сводка статистических данных

В результате первой стадии статистического исследования (статистического наблюдения) получают статистическую информацию,
представляющую собой большое количество первичных, разрозненных сведений об отдельных единицах объекта исследо­вания (записи о каждом гражданине страны при переписи насе­ления: пол, национальность, возраст, образование, род занятий и многие другие признаки).

Дальнейшая задача статистики заклю­чается в том, чтобы привести эти материалы в определенный по­рядок, систематизировать и на этой основе дать сводную характе­ристику всей совокупности фактов при помощи обобщающих статистических показателей, отражающих сущность социально-экономических явлений и определенные статистические законо­мерности. Это достигается в результате сводки
— второй стадии статистического исследования.

Статистическая сводка
— это научно организованная обработка материалов наблюдения, включающая в себя систематиза­цию, группировку данных, составление таблиц, подсчет групповых и общих итогов, расчет производных показателей (средних, относительных величин).

Если производится только подсчет общих итогов по изучае­мой совокупности единиц наблюдения, то сводка называется простой.
Например, для получения общей численности студентов высших учебных заведений России достаточно сложить данные о численности студентов всех высших учебных заведе­ний (на конец 1998 г. — 3,6 млн. чел.).

По технике или способу выполнения сводка может быть руч­ной
либо механизированной
(с помощью ЭВМ).

Статистическая сводка проводится по определенной про­грамме и плану.

Программа статистической сводки
устанавливает следую­щие этапы:

•выбор группировочных признаков;

•определение порядка формирования групп;

•разработка системы статистических показателей для ха­рактеристики групп и объекта в целом;

•разработка макетов статистических таблиц для представления результатов сводки.

План статистической сводки
содержит указания о последовательности и сроках выполнения отдельных частей сводки, ее ис­полнителях и о порядке изложения и представления результатов.

В сводке статистического материала отдельные единицы ста­тистической совокупности объединяются в группы при помощи метода группировок.

Статистическая группировка
— это процесс образования однородных групп на основе расчленения статистической сово­купности на части или объединения изучаемых единиц в част­ные совокупности по существенным
для них признакам, каждая из которых характеризуется системой статистических показате­лей.

Особым видом группировок является классификация,
представ­ляющая собой устойчивую номенклатуру классов и групп, обра­зованных на основе сходства и различия единиц изучаемого объ­екта. Классификация выступает в роли своеобразного статистиче­ского стандарта, устанавливаемого на определенный промежуток времени, например, ЕГРПО.

Метод статистических группировок позволяет разрабатывать первичный статистический материал. На основе группировки рассчитываются сводные показатели по группам, появляется возмож­ность их сравнения, анализа причин различий между группами, изучения взаимосвязей между признаками. Расчет сводных показа­телей в целом по совокупности позволяет изучить ее структуру.

Кроме того, группировка создает основу для последующей сводки и анализа данных. Этим определяется роль группировок как научной основы сводки.

Большие достижения в области применения метода группи­ровок имеет современная отечественная статистика. Введение группировочных таблиц, содержащих показатели международ­ной системы национальных счетов
(СНС), превращает группировки (классификации) в эффективный метод анализа и вскры­тия резервов в экономике.

Ошибки выборки

При выборочном наблюдении должна быть обеспечена слу­чайность
отбора единиц. Каждая единица должна иметь равную с другими возможность быть отобранной. Именно на этом основывается собственно-случайная выборка.

К собственно-случайной выборке
относится отбор единиц из всей генеральной совокупности (без предварительного рас­членения ее на какие-либо группы) посредством жеребьевки (преимущественно) или какого-либо иного подобного спосо­ба, например, с помощью таблицы случайных чисел.

Случай­ный отбор
— это отбор не беспорядочный. Принцип случай­ности предполагает, что на включение или исключение объ­екта из выборки не может повлиять какой-либо фактор, кро­ме случая. Примером собственно-случайного
отбора могут служить тиражи выигрышей: из общего количества выпущен­ных билетов наугад отбирается определенная часть номеров, на которые приходятся выигрыши.

Долявыборки
есть отношение числа единиц выборочной со­вокупности к числу единиц генеральной совокупности:

Так, при 5%-ной выборке из партии деталей в 1000 ед. объ­ём выборки п
составляет 50 ед., а при 10%-ной выборке — 100 ед. и т.д. При правильной научной организации выборки ошибки репрезентативности можно свести к минимальным значениям, в результате — выборочное наблюдение становится достаточно точным.

Собственно-случайный отбор «в чистом виде» применяет­ся в практике выборочного наблюдения редко, но он является исходным среди всех других видов отбора, в нем заключаются и реализуются основные принципы выборочного наблюдения.

Рассмотрим некоторые вопросы теории выборочного метода и формулы ошибок для простой случайной выборки.

Применяя выборочный метод в статистике, обычно используют два основных вида обобщающих показателей: среднюю величину ко­личественного признака
и относительную величину альтернативного признака
(долю или удельный вес единиц в статистической совокупности, которые отличаются от всех других единиц этой сово­купности только наличием изучаемого признака).

Выборочная доля (w),
или частость, определяется отношением числа единиц, обладающих изучаемым признаком т,
к общему числу единиц выборочной совокупности п:

w=m/n.

Например, если из 100 деталей выборки (n
=100), 95 деталей оказались стандартными (т
=95), то выборочная доля

w
=95/100=0,95 .

Для характеристики надежности выборочных показателей различают среднюю
и предельную ошибки выборки.

Ошибка выборки
ε или, иначе говоря, ошибка репрезента­тивности представляет собой разность соответствующих выбо­рочных и генеральных характеристик:

• для средней количественного признака

Реферат: Сводка и группировка статистических материалов -

• для доли (альтернативного признака)

Реферат: Сводка и группировка статистических материалов -

Ошибка выборки свойственна только выборочным наблюде­ниям. Чем больше значение этой ошибки, тем в большей степе­ни выборочные показатели отличаются от соответствующих генеральных показателей.

Выборочная средняя и выборочная доля по своей сути яв­ляются случайными величинами,
которые могут принимать раз­личные значения в зависимости от того, какие единицы сово­купности попали в выборку. Следовательно, ошибки выборки также являются случайными величинами и могут принимать различные значения. Поэтому определяют среднюю из возмож­ных ошибок — среднюю ошибку выборки.

Рефераты:  Курсовая работа: Показатели качества продукции и методы их определения -

От чего зависит средняя ошибка выборки?
При соблюдении принципа случайного отбора средняя ошибка выборки определя­ется прежде всего объемом выборки:
чем больше численность при прочих равных условиях, тем меньше величина средней ошибки выборки.

Средняя ошибка выборки также зависит от степени варьи­рования
изучаемого признака. Степень варьирования, как из­вестно, характеризуется дисперсией σ2
или w(1-w) —
для альтернативного признака.

Чем меньше вариация признака, а следовательно, и дисперсия, тем меньше средняя ошибка вы­борки, и наоборот. При нулевой дисперсии (признак не варь­ирует) средняя ошибка выборки равна нулю, т. е. любая еди­ница генеральной совокупности будет совершенно точно ха­рактеризовать всю совокупность по этому признаку.

Зависимость средней ошибки выборки от ее объема и степе­ни варьирования признака отражена в формулах, с помощью которых можно рассчитать среднюю ошибку выборки в условиях выборочного наблюдения, когда генеральные характеристики (х ,p)
неизвестны, и следовательно, не представляется возмож­ным нахождение реальной ошибки выборки непосредственно по формулам (форм. 1), (форм. 2).

– При случайном повторном отборе средние ошибки
теоретически рассчитывают по следующим формулам:

• для средней количественного признака

Реферат: Сводка и группировка статистических материалов -

• для доли (альтернативного признака)

Реферат: Сводка и группировка статистических материалов -

Поскольку практически дисперсия признака в генеральной совокупности σ2
точно неизвестна, на практике пользуются значением дисперсии S2
, рассчитанным для выборочной сово­купности на основании закона больших чисел, согласно кото­рому выборочная совокупность при достаточно большом объеме выборки достаточно точно воспроизводит характеристики гене­ральной совокупности.

Таким образом, расчетные формулысреднейошиб­ки выборки
при случайном повторном отборе будут следующие:

• для средней количественного признака

Реферат: Сводка и группировка статистических материалов -

• для доли (альтернативного признака)

Реферат: Сводка и группировка статистических материалов -

Однако дисперсия выборочной совокупности не равна диспер­сии генеральной совокупности, и следовательно, средние ошибки выборки, рассчитанные по формулам (форм. 5) и (форм. 6), будут прибли­женными. Но в теории вероятностей доказано, что генеральная дисперсия выражается через выборную следующим соотношением:

Реферат: Сводка и группировка статистических материалов -п/
(n
-1) при достаточно больших п —
величина, близкая к единице, то можно принять, что Реферат: Сводка и группировка статистических материалов -п
/(n
-1) иисчислять среднюю ошибку малой выборки
по формуле:Реферат: Сводка и группировка статистических материалов -

– XПри случайном бесповторном отборе
в приведенные выше формулы расчета средних ошибок выборки необходимо подко­ренное выражение умножить на 1-(n/N), поскольку в процес­се бесповторной выборки сокращается численность единиц генеральной совокупности.

• для средней количественного признака

Реферат: Сводка и группировка статистических материалов -Реферат: Сводка и группировка статистических материалов -для доли (альтернативного признака)Реферат: Сводка и группировка статистических материалов -

Так как п
всегда меньше N
, то дополнительный множи­тель 1-(n/N
)всегда будет меньше единицы. Отсюда следу­ет, что средняя ошибка при бесповторном отборе всегда будет меньше, чем при повторном.

В то же время при сравнительно небольшом проценте выборки этот множитель близок к еди­нице (например, при 5%-ной выборке он равен 0,95; при 2%-ной — 0,98 и т.д.). Поэтому иногда на практике пользуются для определения средней ошибки выборки формулами (форм. 5) и (форм. 6) без указанного множителя, хотя выборку и организуют как бесповторную.

Это имеет место в тех случаях, когда число единиц генеральной совокупности N неизвестно или безгра­нично, или когда п
очень мало по сравнению с N
, и по су­ществу, введение дополнительного множителя, близкого по значению к единице, практически не повлияет на значение средней ошибки выборки.

Механическая выборка
состоит в том, что отбор единиц в выборочную совокупность из генеральной, разбитой по ней­тральному признаку на равные интервалы (группы), произво­дится таким образом, что из каждой такой группы в выборку отбирается лишь одна единица. Чтобы избежать систематиче­ской ошибки, отбираться должна единица, которая находится в середине каждой группы.

При организации механического отбора единицы совокуп­ности предварительно располагают (обычно в списке) в опре­деленном порядке (например, по алфавиту, местоположению, в порядке возрастания или убывания значений какого-либо по­казателя, не связанного с изучаемым свойством, и т.д.), после чего отбирают заданное число единиц механически, через оп­ределенный интервал.

При этом размер интервала в генеральной совокупности равен обратному значению доли выборки. Так, при 2%-ной выборке отбирается и проверяется каждая 50-я единица (1 : 0,02), при 5%-ной выборке — каждая 20-я едини­ца (1 : 0,05), например, сходящая со станка деталь.

При достаточно большой совокупности механический отбор по точности результатов близок к собственно-случайному. По­этому для определения средней ошибки механической выборки используют формулы собственно-случайной бесповторной вы­борки (форм. 9), (форм. 10).

Для отбора единиц из неоднородной совокупности применя­ется, так называемая типическая выборка,
которая используется в тех случаях, когда все единицы генеральной совокупности можно разбить на несколько качественно однородных, однотипных групп по признакам, влияющим на изучаемые показатели.

При обследовании предприятий такими группами могут быть, например, отрасль и подотрасль, формы собственности. Затем из каждой типической группы собственно-случайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность.

Типическая выборка обычно применяется при изучении слож­ных статистических совокупностей. Например, при выборочном обследовании семейных бюджетов рабочих и служащих в отдель­ных отраслях экономики, производительности труда рабочих пред­приятия, представленных отдельными группами по квалификации.

Типическая выборка дает более точные результаты по сравнению с другими способами отбора единиц в выбороч­ную совокупность. Типизация генеральной совокупности обеспечивает репрезентативность такой выборки, представи­тельство в ней каждой типологической группы, что позволяет исключить влияние межгрупповой дисперсии на среднюю ошибку выборки.

При определении средней ошибки типической выборки
в ка­честве показателя вариации выступает средняя из внутригрупповых дисперсий.

Среднюю ошибку выборки
находят по формулам:

• для средней количественного признака

Реферат: Сводка и группировка статистических материалов -Реферат: Сводка и группировка статистических материалов -

• для доли (альтернативного признака)

Реферат: Сводка и группировка статистических материалов -Реферат: Сводка и группировка статистических материалов -Реферат: Сводка и группировка статистических материалов -Реферат: Сводка и группировка статистических материалов -

Серийная выборка
предполагает случайный отбор из генераль­ной совокупности не отдельных единиц, а их равновеликих групп (гнезд, серий) с тем, чтобы в таких группах подвергать наблюде­нию все без исключения единицы.

Применение серийной выборки обусловлено тем, что многие товары для их транспортировки, хранения и продажи упаковываются в пачки, ящики и т.п. Поэтому при контроле качества упакованного товара рациональнее проверить не­сколько упаковок (серий), чем из всех упаковок отбирать необходимое количество товара.

Поскольку внутри групп (серий) обследуются все без исключе­ния единицы, средняя ошибка выборки (при отборе равновеликих серий) зависит только от межгрупповой (межсерийной) дисперсии.

– Среднюю ошибку выборки для средней количественного признака
при серийном отборе находят по формулам:

Реферат: Сводка и группировка статистических материалов -Реферат: Сводка и группировка статистических материалов -

где r –
число отобранных серий; R –
общее число серий.

Межгрупповую дисперсию серийной выборки вычисляют сле­дующим образом:

где Реферат: Сводка и группировка статистических материалов -i
– й серии; Реферат: Сводка и группировка статистических материалов -

– Средняя ошибка выборки для доли (альтернативного при­знака)
при серийном отборе:

Реферат: Сводка и группировка статистических материалов -Реферат: Сводка и группировка статистических материалов -(
форм. 18)

Межгрупповую
(межсерийную) дисперсию доли серийной вы­борки
определяют по формуле:

Реферат: Сводка и группировка статистических материалов -Реферат: Сводка и группировка статистических материалов -i
-й серии; Реферат: Сводка и группировка статистических материалов -

Впрактике статистических обследований помимо рассмот­ренных ранее способов отбора применяется их комбинация (комбинированный отбор).

Список литературы

Гусаров В.М. Теория статистики: уч. М.: ЮНИТИ, Аудит, 1998

Колбачёв Е.Б. Основы статистики. Учебник. М.: Ростов-на-Дону, Феникс,1999

Оцените статью
Реферат Зона
Добавить комментарий