Дискретное (цифровое) представление информации

Дискретное (цифровое) представление информации Реферат

Дискретное (цифровое) представление информации

Дискретное (цифровое) представление информации

Дискретное (цифровое) представление информации

Аналоговый и дискретный способы представления информации При аналоговом представлении информации величины могут принимать бесконечное множество значений. При дискретном представлении информации величина может принимать конечное множество значений, при этом она изменяется скачкообразно.

Аналоговый и дискретный способы представления информации

При аналоговом представлении информации величины могут принимать бесконечное множество значений.

При дискретном представлении информации величина может принимать конечное множество значений, при этом она изменяется скачкообразно.

Дискретизация – это преобразование аналоговой информации (непрерывных изображений и звука) в набор дискретных значений, каждому из которых присваивается значение его кода.

Дискретизация – это преобразование аналоговой информации (непрерывных изображений и звука) в набор дискретных значений, каждому из которых присваивается значение его кода.

Двоичное кодирование графической информации В процессе кодирования изображения производится его пространственная дискретизация . Пространственную дискретизацию можно сравнить с построением изображения из мозаики (большого количества маленьких, одинаковых по форме и размеру, разноцветных стекол). Любое изображение при кодировании представляется совокупностью точек ( пикселей ), каждая из которых окрашена в тот или иной цвет . Пиксель - наименьший элемент изображения.

Двоичное кодирование графической информации

В процессе кодирования изображения производится его пространственная дискретизация . Пространственную дискретизацию можно сравнить с построением изображения из мозаики (большого количества маленьких, одинаковых по форме и размеру, разноцветных стекол).

Любое изображение при кодировании представляется совокупностью точек ( пикселей ), каждая из которых окрашена в тот или иной цвет .

Пиксель наименьший элемент изображения.

 Разрешение изображения Качество двоичного кодирования изображения определяется  разрешением рисунка  и  палитрой цветов . Разрешение  — количество пикселей  в изображении по горизонтали и вертикали.

Разрешение изображения

Качество двоичного кодирования изображения определяется разрешением рисунка и палитрой цветов .

Разрешение количество пикселей в изображении по горизонтали и вертикали.

Палитра цветов Цветовая палитра (глубина цвета) определяет количество различных оттенков, которые может принимать отдельная точка рисунка. Количество цветов напрямую зависит от числа бит, отводимого для хранения цвета одной точки. где K — количество цветов , b — число бит, для хранения цвета точки .

Палитра цветов

Цветовая палитра (глубина цвета) определяет количество различных оттенков, которые может принимать отдельная точка рисунка.

Количество цветов напрямую зависит от числа бит, отводимого для хранения цвета одной точки.

где K количество цветов ,b число бит, для хранения цвета точки .

Палитра цветов Чаще всего используются следующие палитры: 256 цветов  — 8 бит на точку; High Color  — 16 бит на точку; True Color  — 24 (32) бита на точку. В режиме True Color цвет точки определяется яркостью свечения каждого из трех основных цветов красного, зеленого и синего. Яркость определяется целым числом от 0 (минимальная яркость свечения) до 255 (максимальная яркость свечения). Первый байт — яркость красной составляющей, второй — зеленой, третий — синей.

Палитра цветов

Чаще всего используются следующие палитры:

256 цветов — 8 бит на точку;

High Color — 16 бит на точку;

True Color — 24 (32) бита на точку.

В режиме True Color цвет точки определяется яркостью свечения каждого из трех основных цветов красного, зеленого и синего. Яркость определяется целым числом от 0 (минимальная яркость свечения) до 255 (максимальная яркость свечения). Первый байт — яркость красной составляющей, второй — зеленой, третий — синей.

True Color

True Color

Дискретное (цифровое) представление информацииДискретное (цифровое) представление информации Информационный объем изображения Информационный объем изображения можно определить по следующей формуле: где Р  — информационный объем изображения;  m  — горизонтальное разрешение экрана (точек);  n  — вертикальное разрешение экрана (точек);  b   — разрядность кодирования цвета (бит). Ответ получается в байтах.

Информационный объем изображения

Информационный объем изображения можно определить по следующей формуле:

где Р — информационный объем изображения;

m горизонтальное разрешение экрана (точек);

n вертикальное разрешение экрана (точек);

b разрядность кодирования цвета (бит).

Ответ получается в байтах.

Двоичное кодирование звуковой информации Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем он громче для человека, чем больше частота сигнала, тем выше тон.

Двоичное кодирование звуковой информации

Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем он громче для человека, чем больше частота сигнала, тем выше тон.

Звуковая плата преобразует звук при входе в цифровую информацию путем измерения характеристики звука (период, амплитуда) несколько тысяч раз в секунду. Качество двоичного кодирования звука определяется глубиной кодирования и частотой дискретизации .

Звуковая плата преобразует звук при входе в цифровую информацию путем измерения характеристики звука (период, амплитуда) несколько тысяч раз в секунду.

Качество двоичного кодирования звука определяется глубиной кодирования и частотой дискретизации .

Звуковая плата преобразует звук при входе в цифровую информацию путем измерения характеристики звука (период, амплитуда) несколько тысяч раз в секунду. Качество двоичного кодирования звука определяется глубиной кодирования и частотой дискретизации .

Звуковая плата преобразует звук при входе в цифровую информацию путем измерения характеристики звука (период, амплитуда) несколько тысяч раз в секунду.

Качество двоичного кодирования звука определяется глубиной кодирования и частотой дискретизации .

Частота дискретизации (  ) – количество измерений уровня сигнала в единицу времени. Число разрядов, используемое для создания цифрового звука, -- глубина кодирования или разрешение ( b ). Следует учитывать, что возможны как моно- , так и стерео- режимы.

Частота дискретизации (  ) – количество измерений уровня сигнала в единицу времени.

Число разрядов, используемое для создания цифрового звука, — глубина кодирования или разрешение ( b ).

Следует учитывать, что возможны как моно- , так и стерео- режимы.

 Информационный объем звукозаписи Информационный объем звукозаписи можно определить по следующей формуле: где  — частота дискретизации;  t — время звучания;  k — количество каналов;  b   — глубина кодирования звука в битах (разрешение). Ответ получается в байтах.

Информационный объем звукозаписи

Информационный объем звукозаписи можно определить по следующей формуле:

где  — частота дискретизации;

t время звучания;

k количество каналов;

b глубина кодирования звука в битах (разрешение).

Ответ получается в байтах.

Универсальность дискретного (цифрового) представления информации

Давайте подумаем об информации как о сигнале. Мы знаем, что сигнал рассматривается с позиции носителя информации по техническим средствам передачи.

Для передачи информации, или, правильнее сказать, данных, используется физический процесс, который может быть описан математической формулой и называется сигналом. Именно сигналы различают по способу их представления как аналоговые и дискретные (см. рис. 1 и 2).

Дискретное (цифровое) представление информацииДискретное (цифровое) представление информации

Рис. 1. Аналоговый сигнал Рис. 2. Дискретный сигнал

Аналоговая информация характеризуется плавным изменением ее параметров. Основные параметры наиболее простых синусоидальных аналоговых сигналов могут непрерывно и плавно меняться.

Дискретная информация базируется на ряде фиксированных уровней представления заданных параметров, взятых в определенные промежутки времени. Если этих уровней много, можно говорить о цифровом представлении информации, то есть когда в определенные дискретные моменты они принимают конкретные дискретные значения. К счастью, аналоговую информацию легко преобразовать в цифровую. Это делают так называемые аналогоцифровые преобразователи (АЦП). Обратное преобразование обеспечивают цифроаналоговые преобразователи (ЦАП).

В качестве носителей аналоговой информации могут использоваться различные физические величины, принимающие различные значения на некотором интервале, например, электрический ток, радиоволна и т.д. При дискретизации, то есть при преобразовании непрерывных изображений и звука в набор дискретных значений в форме кодов, за основу берется какое-либо конкретное значение, а любые другие, отличающиеся от нормы, просто игнорируются.

Аналоговыми устройствами являются:

· телевизор — луч кинескопа непрерывно перемещается по экрану, чем сильнее луч, тем ярче светится точка, в которую он попадает; изменение свечения точек происходит плавно и непрерывно;

· проигрыватель грампластинок – чем больше высота неровностей на звуковой дорожке, тем громче звучит звук;

· телефон – чем громче мы говорим в трубку, тем выше сила тока, проходящего по проводам, тем громче звук, который слышит собеседник.

К дискретным устройствам относятся:

· монитор – яркость луча изменяется не плавно, а скачкообразно (дискретно). Луч либо есть, либо его нет. Если луч есть, то мы видим яркую точку (белую или цветную). Если луча нет, мы видим черную точку. Поэтому изображение на экране монитора получается более четким, чем на экране телевизора;

· проигрыватель аудиокомпакт-дисков – звуковая дорожка представлена участками с разной отражающей способностью;

· струйный принтер – изображение состоит из отдельных точек разного цвета.

Человек благодаря своим органам чувств привык иметь дело с аналоговой информацией, а в компьютере информация представлена в цифровом виде. Преобразование графической и звуковой информации из аналоговой формы в дискретную производится путем дискретизации, то есть разбиения непрерывного графического изображения или звукового сигнала на отдельные элементы.

Чувствительные органы живого организма в основном по своей природе дискретны. Зрительные образы воспринимают клетки сетчатки глаза, тактильные ощущения возникают в чувствительных нейронах, запахи воспринимаются рецепторами обоняния, каждый из которых в любой момент времени находится либо в возбужденном, либо невозбужденном состоянии. Все чувственные восприятия преобразуются в организме из дискретной формы в непрерывную, причем информация хранится не в отдельных нейронах головного мозга, а распределена по нему целиком. Непрерывность представления, например, зрительной информации позволяет человеку уверенно воспринимать динамику окружающего мира. Дискретные величины принимают не все возможные, а только определенные значения, и их можно пересчитать.

В технике непрерывная информация называется аналоговой. Многие устройства, созданные человеком, работают с аналоговой информацией. Луч кинескопа телевизора перемещается по экрану, вызывая свечение точек. Чем сильнее луч, тем ярче свечение. Изменение свечения происходит плавно и непрерывно. Проигрыватель грампластинок, ртутный термометр, манометр — примеры аналоговых устройств. Некоторые бытовые приборы могут иметь как аналоговую, так и цифровую конструкцию. К примеру, тонометр — прибор для измерения кровяного давления. Существенным отличием является то, что аналоговый прибор может выдать абсолютно произвольную величину показаний (чуть больше или меньше деления), а набор показаний у цифрового прибора ограничен количеством цифр на индикаторе. Компьютер работает исключительно с дискретной (цифровой) информацией. Память компьютера состоит из отдельных битов, а значит, дискретна. Датчики, посредством которых воспринимается информация, измеряют в основном непрерывные характеристики — температуру, нагрузку, напряжение и т.д. Встает проблема преобразования аналоговой информации в дискретную форму.

Идея дискретизации непрерывного сигнала заключается в следующем. Пусть имеется некоторый непрерывный сигнал. Можно допустить, что на маленьких промежутках времени значение характеристик этого сигнала постоянно и меняется мгновенно в конце каждого промежутка. «Нарезав» весь временной интервал на эти маленькие кусочки и взяв на каждом из них значение характеристик, получим сигнал с конечным числом значений. Таким образом, он станет дискретным. Непрерывная величина часто ассоциируется с графиком функции, а дискретная — с таблицей ее значений.

Такой процесс называется оцифровкой аналогового сигнала, а преобразование информации — аналого-цифровым преобразованием. Точность преобразования зависит от величины дискретности — частоты дискретизации: чем выше частота дискретизации, тем ближе цифровая информация к качеству аналоговой. Но и тем больше вычислений приходится делать компьютеру и тем больше информации хранить и обрабатывать.

Дискретизация – это преобразование непрерывных изображений и звука в набор дискретных значений в форме кодов.

При передаче дискретных данных по каналам связи применяются два основных типа физического кодирования – на основе синусоидального несущего сигнала и на основе последовательности прямоугольных импульсов. Первый способ часто называется также модуляцией или аналоговой модуляцией, подчеркивая тот факт, что кодирование осуществляется за счет изменения параметров аналогового сигнала. Второй способ обычно называют цифровым кодированием. Эти способы отличаются шириной спектра результатирующего сигнала и сложностью аппаратуры, необходимой для их реализации.

В настоящее время все чаще данные, изначально имеющие аналоговую форму (речь, телевизионное изображение), передаются по каналам связи в дискретном виде, то есть в виде последовательности единиц и нулей. Процесс представления аналоговой информации в дискретной форме называется дискретной модуляцией. Аналоговая модуляция применяется для передачи дискретных данных по каналам с узкой полосой частот, типичным представителем которых является канал тональной частоты (телефонная сеть).

В простых вычислительных машинах, в таких, как цифровые электромеханические или аналоговые, перенастройка на различные задачи осуществлялась с помощью изменения системы связей между элементами на специальной коммутационной панели. В современных универсальных компьютерах такие изменения производятся с помощью запоминания в специальном устройстве, накапливающем информацию, той или иной программы ее работы.

В отличие от аналоговых машин, оперирующих непрерывной информацией, современные компьютеры имеют дело с дискретной информацией, на входе и выходе которых в качестве такой информации могут выступать любые последовательности десятичных цифр, букв, знаков препинания и других символов. Внутри системы эта информация кодируется в виде последовательности сигналов, принимающих лишь два различных значения.

В то время как возможности аналоговых машин ограничены преобразованиями строго ограниченных типов сигналов, современные компьютеры обладают свойством универсальности, иными словами, компьютер может производить преобразования любых буквенно-цифровых данных благодаря программе, составленной для выполнения той или иной задачи. Эта способность компьютера достигается за счет универсальности его системы команд, то есть элементарных преобразований информации.

Свойство универсальности компьютера не ограничивается возможностью оперирования одной лишь буквенно-цифровой информацией. В данном виде может быть представлена (закодирована) любая дискретная информация, а также – с любой заданной степенью точности – произвольная непрерывная информация. Таким образом, компьютеры могут рассматриваться как универсальные преобразователи информации. Свойство универсальности современных компьютеров открывает возможность моделирования с их помощью любых других преобразователей информации, в том числе любых мыслительных процессов.

Технологии цифровой обработки акустических сигналов и изображений находят все более широкое применение в различных областях, в частности при идентификации пользователей или для построения многоуровневых систем защиты. Вместе с тем в перечне основных предъявляемым к соответствующим системам требований на первом месте стоит универсальность, быстрота и эффективность выполнения различных процедур обработки на основе использования стандартных недорогих технических средств, входящих в комплект традиционной офисной техники и компьютерной телефонии: ПК, сканера, принтера, звуковой платы, модема. Для реализации таких систем нужны подходы, позволяющие обрабатывать акустический сигнал и речь.

Практически 80% информации человек получает через зрение, что означает доминирование зрительных рецепторов в жизнедеятельности человека. Вся информация в аппарате мышления человека сохраняется в виде образов, причем в этом образе сконцентрирована информация, полученная всеми рецепторами человека. Можно сделать вывод, что информация в памяти человека хранится в виде графических объектов. Развивая гипотезу о том, что любая информация, получаемая человеком извне, проходит стадию преобразования в изображения с последующей их целенаправленной обработкой, можно вывести последовательность процедур, пригодную для реализации в автоматизированных системах обработки данных различного рода, в том числе и в речи:

· предобработка, когда независимо от вида полученной информации осуществляется ее преобразование к общему виду первичных описаний в виде двухмерных матриц данных, имеющих неотрицательные значения, которые можно рассматривать как изображения, образы;

· обработка предполагает, что на основе каких-либо общих принципов, методов и алгоритмов осуществляются преобразования полученных первичных данных для достижения поставленных целей (сжатие, «шумоочистка», сравнение, распознавание и др.);

· получение новых знаний и принятие решений основываются на заключении из характера и вида полученной из внешнего мира информации, а также результатов ее обработки для выполнения конкретных действий в соответствии с общей стратегией поведения человека.

Практическая значимость этой гипотезы состоит в том, что интеллектуальные возможности человека по анализу и обработке визуальной информации, а также наработанный научный потенциал в области восстановления, распознавания и обработки изображений можно распространить сегодня на существующие технологии обработки информации иного рода, в том числе на акустические сигналы и речь.

Люди воспринимают пространство как «глубину», и изображения, формируемые мысленным взором, представляются им трехмерными. Однако в точных дисциплинах редко применяется обработка трехмерных изображений, что объясняется очевидными техническими трудностями работы с ними, а также недостаточным пониманием природы процесса восприятия изображений. В большинстве практических приложений исследователи имеют дело с квазитрехмерными изображениями, когда по двум известным параметрам, например, частоте и времени, строится некая двухмерная матрица, значения которой определяются значениями третьего известного параметра, например, мощностью и амплитудой рассчитанного мгновенного спектра.

§

Непозиционными системами пользовались древние египтяне, греки, римляне и некоторые другие народы древности.

На Руси вплоть до XVIII века, использовалась непозиционная система славянских цифр. Буквы кириллицы (славянского алфавита) имели цифровое значение, если над ними ставился специальный знак ~ титло. Например Ã — 1, Дискретное (цифровое) представление информации — 4, Дискретное (цифровое) представление информации — 100.

Непозиционные системы счисления были более или менее пригодны для выполнения сложения и вычитания, но совсем не удобны при умножении и делении.

Идея позиционной системы счисления впервые возникла в древнем Вавилоне.

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции.

Количество используемых цифр называется основанием позиционной системы счисления.

Система счисления, применяемая в современной математике, является позиционной десятичной системой. Ее основание равно десяти, так как запись любых чисел производится с помощью десяти цифр:

0,1, 2, 3, 4, 5, 6, 7, 8, 9.

Хотя десятичную систему принято называть арабской, но зародилась она в Индии, в V веке. В Европе об этой системе узнали в XII веке из арабских научных трактатов, которые были переведены на латынь. Этим и объясняется название «арабские цифры». Однако широкое распространение в науке и в обиходе десятичная позиционная система получила только в XVIвеке. Эта система позволяет легко выполнять любые арифметические вычисления, записывать числа любой величины. Распространение арабской системы дало мощный толчок развитию мате­матики.

С позиционной десятичной системой счисления вы знакомы с раннего детства, только, возможно, не знали, что она так называется.

Позиционный тип этой системы легко понять на примере любого многозначного числа. Например, в числе 333 первая тройка означает три сотни, вторая — три десятка, третья — три единицы. Одна и та же цифра в зависимости от позиции в записи числа обозначает разные величины.

333 = 3×100 3×10 3.

Еще пример:

32478 = 3 х 10000 2 х 1000 4 х 100 7 х 10 8 =

= 3 х 104 2 х 103 4 х 102 7 х 101 8 х 10.

Отсюда видно, что всякое десятичное число можно представить как сумму произведений составляющих его цифр на соответствующие степени десятки. То же самое относится и к десятичным дробям.

26,387 = 2 х 101 6 х 10 3 х 10-1 8 х 10-2 7 х 10-3

§

Компьютеры используют двоичную систему потому, что она имеет ряд преимуществ перед другими системами:

· для ее реализации нужны технические устройства с двумя устойчивыми состояниями (есть ток — нет тока, намагничен — не намагничен и т.п.), а не, например, с десятью, — как в десятичной;

· представление информации посредством только двух состояний надежно и помехоустойчиво;

· возможно применение аппарата булевой алгебры для выполнения логических преобразований информации;

· двоичная арифметика намного проще десятичной.

Недостаток двоичной системы — быстрый рост числа разрядов, необходимых для записи чисел.

Гораздо проще сконструировать процессор, который ра­ботает в двоичной системе счисления, чем работающий в десятичной. Двоичная система, удобная для компьютеров, для человека неудобна из-за ее громоздкости и непривычной записи.

Перевод чисел из десятичной системы в двоичную и наоборот выполняет машина. Однако, чтобы профессионально использовать компьютер, следует научиться понимать слово машины. Для этого и разработаны восьмеричная и шестнадцатеричная системы.

Числа в этих системах читаются почти так же легко, как десятичные, требуют соответственно в три (восьмеричная) и в четыре (шестнадцатеричная) раза меньше разрядов, чем в двоичной системе (ведь числа 8 и 16 – соответственно, третья и четвертая степени числа 2).

Перевод восьмеричных и шестнадцатеричных чисел в двоичную систему очень прост: достаточно каждую цифру заменить эквивалентной ей двоичной триадой (тройкой цифр) или тетрадой (четверкой цифр).

Например:

Дискретное (цифровое) представление информации

Чтобы перевести число из двоичной системы в восьмеричную или шестнадцатеричную, его нужно разбить влево и вправо от запятой на триады (для восьмеричной) или тетрады (для шестнадцатеричной) и каждую такую группу заменить соответствующей восьмеричной (шестнадцатеричной) цифрой.

Например,

Дискретное (цифровое) представление информации

§

Алгоритмы перевода чисел из одной системы счисления в другую.

Мы настолько привыкли к десятичному счету, что число в любой другой системе мало что нам говорит о соответст­вующем ему количестве. Например, что за величина 1123? Чтобы понять «много это или мало», нужно перевести его в десятичную систему. Сделать это довольно просто.

Число 1123 содержит в себе 2 единицы, 1 тройку и 1 девятку. Как и в десятичной системе, число можно пред­ставить в виде суммы произведений составляющих его цифр на соответствующие степени основания системы (в нашем примере — тройки).

1123 =1х32 1х31 2х3°= 9 3 2 = 1410

Следовательно, 1123 = 1410

Переведем двоичное число 1011012 в десятичную систему счисления. Принцип тот же. Теперь в сумму надо подстав­лять степени двойки:

1011012= 1 х 25 0 х 24 1 х 23 1 х 22 0 х 21 1×2°= 32 8 4 1 = 4510.

И еще один пример — с шестнадцатеричным числом:

15FC16 = 1 х 163 5 х 162 15 х 161 12 = 4096 1280 240 12 = 5628

Аналогично переводятся дробные числа.

101,112 = 1 х 22 0 х 21 1 х 2° 1 х 2-1 1 х 2-2 =

= 4 1 1/2 1/4 = 5 0,5 0,25 = 5,7510.

А как произвести обратный перевод из десятичной сис­темы в недесятичную (n≠10)? Для этого нужно суметь разложить десятичное число на слагаемые, содержащие сте­пени n. Например, при n = 2 (двоичная система):

1510 = 8 4 2 1 = 1х23 1х22 1×21 1 = 11112

Эта задача уже посложнее, чем перевод в десятичную систему. Попробуйте, например, таким образом перевести в двоичную систему число 157. Конечно можно, но трудно!

Однако существует процедура, позволяющая легко выпол­нить такой перевод. Она состоит в том, что данное десятичное число делится с остатком на основание системы. Полученный остаток — это младший разряд искомого числа, а полученное частное снова делится с остатком, который равен второй спра­ва цифре и т.д. Так продолжается до тех пор, пока частное не станет меньше делителя (основания системы). Это частное — старшая цифра искомого числа.

Продемонстрируем этот метод на примере перевода числа 3710 в двоичную систему. Здесь для обозначения цифр в записи числа используется символика: а5а4а3а2а1а.

Дискретное (цифровое) представление информации

Перевод правильной десятичной дроби в другую систему счисления производится путем последовательных умноже­ний на основание системы с выделением целой части произведений. Однако мы остановимся лишь на целых числах.

§

Логика, как наука развивается с IV в. до н. э. начиная с трудов Аристотеля. Именно он подверг анализу человеческое мышление, такие его формы, как понятие, суждение, умозаключение.

Логика – (от греч. “логос”, означающего “слово” и “смысл”) – наука о законах, формах и операциях правильного мышления. Ее основная задача заключается в нахождении и систематизации правильных способов рассуждения.

Дискретное (цифровое) представление информации

Рис. 1. Основные формы абстрактного мышления

Понятие – это форма мышления, в которой отражаются существенные признаки отдельного предмета или класса однородных предметов. Всякое понятие имеет содержание и объем. Например, понятие “Черное море” – отражает единичный предмет, “Сиамская кошка” – отражает класс сиамских кошек.

Высказывание (суждение) – некоторое предложение, которое может быть истинно (верно) или ложно. Например, Абакан – столица Хакасии. Утверждение – суждение, которое требуется доказать или опровергнуть. Рассуждение – цепочка высказываний или утверждений, определенным образом связанных друг с другом.

Умозаключение – логическая операция, в результате которой из одного или нескольких данных суждений получается (выводится) новое суждение. Умозаключения бывают: Дедуктивные (от общего к частному) – Все ученики ходят в школу. Вася – ученик. Вася ходит в школу. Индуктивные (от частного к общему) – Банан и персик – сладкие. Значит, все фрукты сладкие на вкус. Аналогия – Наши коровы едят траву и дают молоко. В Австралии есть поля, коровы едят эту траву. Следовательно, австралийские коровы тоже дают молоко.

В алгебре логики высказывания обозначаются именами логических переменных (А, В, С). Истина, ложь – логические константы.

Логическое выражение – запись или устное утверждение, в которое, наряду с постоянными, обязательно входят переменные величины (объекты). В зависимости от значений этих переменных логическое выражение может принимать одно из двух возможных значений: ИСТИНА (логическая 1) или ЛОЖЬ (логический 0).

Сложное логическое выражение– логическое выражение, составленное из одного или нескольких простых (или сложных) логических выражений, связанных с помощью логических операций.

§

1) Логическое умножение или конъюнкция:

Конъюнкция — это сложное логическое выражение, которое считается истинным в том и только том случае, когда оба простых выражения являются истинными, во всех остальных случаях данное сложеное выражение ложно.
Обозначение: F = A & B.

Таблица истинности для конъюнкции

2) Логическое сложение или дизъюнкция:

Дизъюнкция — это сложное логическое выражение, которое истинно, если хотя бы одно из простых логических выражений истинно и ложно тогда и только тогда, когда оба простых логических выраженныя ложны.
Обозначение: F = A B.

Таблица истинности для дизъюнкции

3) Логическое отрицание или инверсия:

Инверсия — это сложное логическое выражение, если исходное логическое выражение истинно, то результат отрицания будет ложным, и наоборот, если исходное логическое выражение ложно, то результат отрицания будет истинным. Другими простыми слова, данная операция означает, что к исходному логическому выражению добавляется частица НЕ или слова НЕВЕРНО, ЧТО.

Таблица истинности для инверсии

4) Логическое следование или импликация:

Импликация — это сложное логическое выражение, которое истинно во всех случаях, кроме как из истины следует ложь. Тоесть данная логическая операция связывает два простых логических выражения, из которых первое является условием (А), а второе (В) является следствием.

Таблица истинности для импликации

5) Логическая равнозначность или эквивалентность:

Эквивалентность — это сложное логическое выражение, которое является истинным тогда и только тогда, когда оба простых логических выражения имеют одинаковую истинность.

Таблица истинности для эквивалентности

Порядок выполнения логических операций в сложном логическом выражении

1. Инверсия;

2. Конъюнкция;

3. Дизъюнкция;

4. Импликация;

5. Эквивалентность.

Для изменения указанного порядка выполнения логических операций используются скобки.

Вопросы самоконтроля

1. Объясните состав ПК?

2. Что такое Инверсия?

3. Что такое Что такое Импликация?

4. Что такое Дизъюнкция?

5. Опишите основные формы мышления

Тема 2.3. Хранение информационных объектов различных видов на различных цифровых носителях. Определение объемов различных носителей информации. Архив информации.

ПЛАН:

Информационный объект

Электронные информационные объекты

Определение объемов различных носителей информации

Архив информации

Вопросы самоконтроля

§

В современном обществе можно выделить три основных вида носителей информации:

1) бумажный;

2) магнитный;

3) оптический.

Современные микросхемы памяти позволяют хранить в 1 см3 до 1010 битов информации, однако это в 100 миллиардов раз меньше, чем в ДНК. Можно сказать, что современные технологии пока существенно проигрывают биологической эволюции.

Однако если сравнивать информационную емкость традиционных носителей информации (книг) и современных компьютерных носителей, то прогресс очевиден:

• Лист формата А4 с текстом (набран на компьютере шрифтом 12-го кегля с одинарным интервалом) — около 3500 символов

• Страница учебника — 2000 символов

• Гибкий магнитный диск – 1,44 Мб

• Оптический диск CD-R(W) – 700 Мб

• Оптический диск DVD – 4,2 Гб

• Флэш-накопитель — несколько Гб

• Съемный жесткий диск или Жесткий магнитный диск– сотни Гб

Таким образом, на дискете может храниться 2-3 книги, а на жестком магнитном диске или DVD — целая библиотека, включающая десятки тысяч книг.

Достоинства и недостатки хранения информации во внутренней и внешней памяти. (Достоинство внутренней памяти — быстротавоспроизведения информации, а недостаток- со временем часть информации забывается. Достоинство внешней памяти- большие объемы информации хранится долго, а недостаток- для доступа к определенной информации требуется время (например, чтобы подготовить реферат по предмету необходимо найти, проанализировать и выбрать подходящий материал))

Архив информации

Одним из наиболее широко распространенных видов сервисных программ являются программы, предназначенные для архивации, упаковки файлов путем сжатия хранимой в них информации.

Сжатие информации — это процесс преобразования информации, хранящейся в файле, к виду, при котором уменьшается избыточность в ее представлении и соответственно требуется меньший объем памяти для хранения.

Сжатие информации в файлах производится за счет устранения избыточности различными способами, например за счет упрощения кодов, исключения из них постоянных битов или представления повторяющихся символов или повторяющейся последовательности символов в виде коэффициента повторения и соответствующих символов. Применяются различные алгоритмы подобного сжатия информации.

Сжиматься могут как один, так и несколько файлов, которые в сжатом виде помещаются в так называемый архивный файл или архив.

Архивный файл — это специальным образом организованный файл, содержащий в себе один или несколько файлов в сжатом или несжатом виде и служебную информацию об именах файлов, дате и времени их создания или модификации, размерах и т.п.

Целью упаковки файлов обычно являются обеспечение более компактного размещения информации на диске, сокращение времени и соответственно стоимости передачи информации по каналам связи в компьютерных сетях. Кроме того, упаковка в один архивный файл группы файлов существенно упрощает их перенос с одного компьютера на другой, сокращает время копирования файлов на диски, позволяет защитить информацию от несанкционированного доступа, способствует защите от заражения компьютерными вирусами.

Рефераты:  ЫБЫРАЙ АЛТЫНСАРИН - kz »Рефераттар

Степень сжатия зависит от используемой программы, метода сжатия и типа исходного файла. Наиболее хорошо сжимаются файлы графических образов, текстовые файлы и файлы данных, для которых степень сжатия может достигать 5 — 40%, меньше сжимаются файлы исполняемых программ и загрузочных модулей — 60 — 90%. Почти не сжимаются архивные файлы. Программы для архивации отличаются используемыми методами сжатия, что соответственно влияет на степень сжатия.

Архивация (упаковка) — помещение (загрузка) исходных файлов в архивный файл в сжатом или несжатом виде. Разархивация (распаковка) — процесс восстановления файлов из архива точно в таком виде, какой они имели до загрузки в архив. При распаковке файлы извлекаются из архива и помещаются на диск или в оперативную память;

Программы, осуществляющие упаковку и распаковку файлов, называются программами-архиваторами.

Большие по объему архивные файлы могут быть размещены на нескольких дисках (томах). Такие архивы называются многотомными. Том — это составная часть многотомного архива. Создавая архив из нескольких частей, можно записать его части на несколько дискет.

Основными характеристиками программ-архиваторов являются:

скорость работы;

сервис (набор функций архиватора);

степень сжатия – отношение размера исходного файла к размеру упакованного файла.

Основными функциями архиваторов являются:

· создание архивных файлов из отдельных (или всех) файлов текущего каталога и его подкаталогов, загружая в один архив до 32 000 файлов;

· добавление файлов в архив;

· извлечение и удаление файлов из архива;

· просмотр содержимого архива;

· просмотр содержимого архивированных файлов и поиск строк в архивированных файлах;

· ввод в архив комментарии к файлам;

· создание многотомных архивов;

· создание самораспаковывающихся архивов, как в одном томе, так и в виде нескольких томов;

· обеспечение защиты информации в в архиве и доступ к файлам, помещенным в архив, защиту каждого из помещенных в архив файлов циклическим кодом;

· тестирование архива, проверка сохранности в нем информации;

· восстановление файлов (частично или полностью) из поврежденных архивов;

· поддержки типов архивов, созданных другими архиваторами и др.

Типы архивов

Для сжатия используются различные алгоритмы, которые можно разделить на обратимые и методы сжатия с частичной потерей информации. Последние более эффективны, но применяются для тех файлов, для которых частичная потеря информации не приводит к значительному снижению потребительских свойств. Характерными форматами сжатия с потерей информации являются:

.jpg — для графических данных;

.mpg — для видеоданных;

.mp3 — для звуковых данных.

Характерные форматы сжатия без потери информации:

.tif, .pcx и другие — для графических файлов;

.avi — для видеоклипов;

.zip, .arj, .rar, .lzh, .cab и др. — для любых типов файлов.

§

В настоящее время применяется несколько десятков программ-архиваторов, которые отличаются перечнем функций и параметрами работы, однако лучшие из них имеют примерно одинаковые характеристики. Из числа наиболее популярных программ можно выделить: ARJ, РКРАК, LHA, ICE, HYPER, ZIP, РАК, ZOO, EXPAND, разработанные за рубежом, а также AIN и RAR, разработанные в России. Обычно упаковка и распаковка файлов выполняются одной и той же программой, но в некоторых случаях это осуществляется разными программами, например, программа PKZIP производит упаковку файлов, a PKUNZIP — распаковку файлов. В настоящее время наиболее популярны архиваторы: WinZip; WinRar; WinArj. Эти программы обеспечивают возможность использования и других архиваторов, поэтому, если на компьютере, куда перенесены сжатые в них файлы, отсутствуют указанные программы, архивы можно распаковать с помощью другого архиватора

Программы-архиваторы позволяют создавать и такие архивы, для извлечения из которых содержащихся в них файлов не требуются какие-либо программы, так как сами архивные файлы могут содержать программу распаковки. Такие архивные файлы называются самораспаковывающимися.

Самораспаковывающийся архивный файл — это загрузочный, исполняемый модуль, который способен к самостоятельной разархивации находящихся в нем файлов без использования программы-архиватора.

Самораспаковывающийся архив получил название SFX-архив (SelF-eXtracting). Архивы такого типа в MS DOS обычно создаются в форме .ЕХЕ-файла.

Многие программы-архиваторы производят распаковку файлов, выгружая их на диск, но имеются и такие, которые предназначены для создания упакованного исполняемого модуля (программы). В результате такой упаковки создается программный файл с теми же именем и расширением, который при загрузке в оперативную память самораспаковывается и сразу запускается. Вместе с тем возможно и обратное преобразование программного файла в распакованный формат. К числу таких архиваторов относятся программы PKLITE, LZEXE, UNP.

Программа EXPAND, входящая в состав утилит операционной системы MS DOS и оболочки Windows, применяется для распаковки файлов программных продуктов, поставляемых фирмой Microsoft.

Программы-архиваторы RAR и AIN, кроме обычного режима сжатия, имеют режим solid, в котором создаются архивы с повышенной степенью сжатия и особой структурой организации. В таких архивах все файлы сжимаются как один поток данных, т.е. областью поиска повторяющихся последовательностей символов является вся совокупность файлов, загруженных в архив, и поэтому распаковка каждого файла, если он не первый, связана с обработкой других. Архивы такого

Вопросы самоконтроля

1. Приведите примеры информационных объектов.

2. Какие электронные информационные объекты Вам известны?

3. Перечислите современные носители информации.

4. Что такое архивация?

5. Какие функции архиваторов Вам известны?

6. Перечислите основные виды программ-архиваторов.

§

ПЛАН:

1. Поиск информации: основные понятия, виды и формы организации

Поиск информации, в ОС Windows

Программные поисковые сервисы

Проводная и беспроводная связь

Вопросы самоконтроля

1. Поиск информации: основные понятия, виды и формы организации

Поиск информации или информационный поиск представляет один из основных информационных процессов. Человечество издревле занималось им. Цели, возможности и характер поиска всегда зависели от наличия, информации, её важности и доступности, а также средств организации поиска.

Конец XX — начало XXI века, характеризуется огромными массивами постоянно растущей разнообразной информации, доступной и представляющей интерес для самых широких слоев социума. Более того, Интернет-технологии и программно-технические средства, также доступные большинству людей, позволяют осуществлять данный процесс в любое время, практически в любом месте по любым запросам.

Поиск — процесс, в ходе которого в той или иной последовательности производится соотнесение отыскиваемого с каждым объектом, хранящимся в массиве. Цель любого поиска заключается в потребности, необходимости или желании находить различные виды информации, способствующие получению лицом, осуществляющим поиск, нужных ему сведений, знаний и т.д. для повышения собственного профессионального, культурного и любого иного уровня; создания новой информации и формирования новых знаний; принятия управленческих решений и т.п.

Существуют различные толкования термина «поиск информации» или «информационный поиск».

Термин «информационный поиск» (англ. «information retrieval») ввёл американский математик К. Муэрс. Он заметил, что побудительной причиной такого поиска является информационная потребность, выраженная в форме информационного запроса. К объектам информационного поиска К. Муэрс отнес документы, сведения об их наличии и (или) местонахождении, фактографическую информацию.

Решать проблемы фактографического поиска первыми стали представители библиотек. Они разработали средства информационного поиска, получившие название «справочно-поисковый аппарат» (каталоги, библиографические указатели и др.). В профессиональной отечественной печати данный термин используется с 1970-х годов. Библиотекари определяют «информационный поиск» как нахождение в информационном массиве документов, соответствующих информационному запросу пользователей.

С точки зрения использования компьютерной техники «информационный поиск» — совокупность логических и технических операций, имеющих конечной целью нахождение документов, сведений о них, фактов, данных, релевантных запросу потребителя.

«Релевантность» — устанавливаемое при информационном поиске соответствие содержания документа информационному запросу или поискового образа документа поисковому предписанию.

§

Передача информации между компьютерами существует с самого момента возникновения ЭВМ. Она позволяет организовать совместную работу отдельных компьютеров, решать одну задачу с помощью нескольких компьютеров, совместно использовать ресурсы и решать множество других проблем.

Под компьютерной сетью понимают комплекс аппаратных и программных средств, предназначенных для обмена информацией и доступа пользователей к единым ресурсам сети.

Основное назначение компьютерных сетей — обеспечить совместный доступ пользователей к информации (базам данных, документам и т.д.) и ресурсам (жесткие диски, принтеры, накопители CD-ROM, модемы, выход в глобальную сеть и т.д.).

Абоненты сети – объекты, генерирующие или потребляющие информацию.

Абонентами сети могут быть отдельные ЭВМ, промышленные роботы, станки с ЧПУ (станки с числовым программным управлением) и т.д. Любой абонент сети подключён к станции.

Станция – аппаратура, которая выполняет функции, связанные с передачей и приёмом информации.

Для организации взаимодействия абонентов и станции необходима физическая передающая среда.

Физическая передающая среда – линии связи или пространство, в котором распространяются электрические сигналы, и аппаратура передачи данных.

Одной из основных характеристик линий или каналов связи является скорость передачи данных (пропускная способность).

Скорость передачи данных — количество бит информации, передаваемой за единицу времени.

Обычно скорость передачи данных измеряется в битах в секунду (бит/с) и кратных единицах Кбит/с и Мбит/с.

Соотношения между единицами измерения:

1 Кбит/с =1024 бит/с;

1 Мбит/с =1024 Кбит/с;

1 Гбит/с =1024 Мбит/с.

На базе физической передающей среды строится коммуникационная сеть.

Таким образом, компьютерная сеть – это совокупность абонентских систем и коммуникационной сети.

Для соединения пользователей в единую локальную сеть необходимо определиться, какое оборудование стоит использовать. Сегодня существует две альтернативные технологии – проводная и беспроводная. Какую же технологию выбрать для своей локальной сети?

Проводная технология предусматривает наличие между пользователями стационарного физического соединения. Это может быть коаксиальный кабель, витая пара или соединение с использованием оптического волокна. Соединение является высоконадежным и одновременно несколько громоздким. При проектировании таких сетей обязательно проектируют и устанавливают кабель каналы, рассчитывают, как будет проходить линия связи в помещении. Наличие большого количества пользователей в помещении приводит к необходимости монтажа фальшь панелей на полу и прокладки кабелей под полом. Это решение отличается некоторой степенью стабильности и подходит для длительного срока эксплуатации помещения. Следует отметить, что такое решение может лежать в рамках единой офисной сети, что стоит достаточно дорого.

Беспроводные технологии позволяют создавать локальные сети, не зависящие от расположения внутри одного помещения коммутируемых устройств. Беспроводную локальную сеть, как и проводную, с внешней сетью соединяет коммутатор ethernet. Это стационарное устройство подключается к беспроводным точкам доступа.

Организовать же беспроводную точку доступа помогает маршрутизатор с функцией WiFi доступа или непосредственно сама точка доступа. Эта технология может использоваться для мобильного развертывания локальной сети. Различие между точкой доступа и Wi-Fi роутером такое же, как между роутером и коммутатором: точка доступа — аналог обычного сетевого хаба (коммутатора, свитча), те она просто объединяет беспроводные компьютеры в один сетевой сегмент, тогда как Wi-Fi роутер — это точка доступа включающая некое программно-апаратное решение, позволяющее подключить вышеописанный сетевой сегмент к Интернету, настроить статические и динамические маршруты для разных сегментов подсети, организовать фильтрацию трафика и контроль действий пользователя (или пользователей). В реальности же точку доступа обычно делают на несколько независимых каналов, поэтому дешевая точка доступа обычно бывает в 1.3 — 1.5 раза дороже дешевого Wi-Fi-роутера.

Вопросы самоконтроля

1. Что такое Релевантность?

2.Что такое Поиско́вая систе́ма?

3. Чем отличаются проводная и беспроводная технологии?

4. Как работает поисковая система?5. Самые популярные поисковые системы в мире?

§

Основная компоновка частей компьютера и связь между ними называется архитектурой. При описании архитектуры компьютера определяется состав входящих в него компонент, принципы их взаимодействия, а также их функции и характеристики.

Дискретное (цифровое) представление информации

Практически все универсальные ЭВМ отражают классическую неймановскую архитектуру, представленную на схеме. Эта схема во многом характерна как для микроЭВМ, так и для мини ЭВМ и ЭВМ общего назначения.

Рассмотрим устройства подробнее

Основная часть системной платы —микропроцессор (МП) или CPU (Central Processing Unit), он управляет работой всех узлов ПК и программой, описывающей алгоритм решаемой задачи. МП имеет сложную структуру в виде электронных логических схем. В качестве его компонент можно выделить:

A). АЛУ — арифметико-логическое устройство, предназначенное для выполнения арифметических и логических операций над данными и адресами памяти;

Б). Регистры или микропроцессорная память — сверхоперативная память, работающая со скоростью процессора, АЛУ работает именно с ними;

B). УУ — устройство управления — управление работой всех узлов МП посредством выработки и передачи другим его компонентам управляющих импульсов, поступающих от кварцевого тактового генератора, который при включении ПК начинает вибрировать с постоянной частотой (100 МГц, 200-400 МГц). Эти колебания и задают темп работы всей системной платы;

Г). СПр — система прерываний — специальный регистр, описывающий состояние МП, позволяющий прерывать работу МП в любой момент времени для немедленной обработки некоторого поступившего запроса, или постановки его в очередь; после обработки запроса СПр обеспечивает восстановление прерванного процесса;

Д). Устройство управления общей шиной — интерфейсная система.

Для расширения возможностей ПК и повышения функциональных характеристик микропроцессора дополнительно может поставляться математический сопроцессор, служащий для расширения набора команд МП. Например, математический сопроцессор IBM-совместимых ПК расширяет возможности МП для вычислений с плавающей точкой; сопроцессор в локальных сетях (LAN-процессор) расширяет функции МП в локальных сетях.

Характеристики процессора:

— быстродействие(производительность, тактовая частота) — количество операций, выполняемых в секунду.

— разрядность — максимальное количество разрядов двоичного числа, над которыми одновременно может выполняться машинная операция.

Интерфейсная система — это:

— шина управления (ШУ) — предназначена для передачи управляющий импульсов и синхронизации сигналов ко всем устройствам ПК;

— шина адреса (ША) — предназначена для передачи кода адреса ячейки памяти или порта ввода/вывода внешнего устройства;

— шина данных (ШД) — предназначена для параллельной передачи всех разрядов числового кода;

-шина питания — для подключения всех блоков ПК к системе электропитания.

Интерфейсная система обеспечивает три направления передачи информации:

— между МП и оперативной памятью;

— между МП и портами ввода/вывода внешних устройств;

— между оперативной памятью и портами ввода/вывода внешних устройств. Обмен информацией между устройствами и системной шиной происходит с помощью кодов ASCII.

Память — устройство для хранения информации в виде данных и программ. Память делится прежде всего на внутреннюю (расположенную на системной плате) и внешнюю (размещенную на разнообразных внешних носителях информации).

Внутренняя память в свою очередь подразделяется на:

— ПЗУ (постоянное запоминающее устройство) или ROM (read only memory), которое содержит — постоянную информацию, сохраняемую даже при отключенном питании, которая служит для тестирования памяти и оборудования компьютера, начальной загрузки ПК при включении. Запись на специальную кассету ПЗУ происходит на заводе фирмы-изготовителя ПК и несет черты его индивидуальности.Объем ПЗУ относительно невелик — от 64 до 256 Кб.

— ОЗУ (оперативное запоминающее устройство, ОП — оперативная память) или RAM (random access memory), служит для оперативного хранения программ и данных, сохраняемых только на период работы ПК. Она энергозависима, при отключении питания информация теряется. ОП выделяется особыми функциями и спецификой доступа:

(1) ОП хранит не только данные, но и выполняемую программу;

(2) МП имеет возможность прямого доступа в ОП, минуя систему ввода/вывода.

Логическая организация памяти — адресация, размещение данных определяется ПО, установленным на ПК, а именно ОС.

Кэш-память — имеет малое время доступа, служит для временного хранения промежуточных результатов и содержимого наиболее часто используемых ячеек ОП и регистров МП.

Объем кэш-памяти зависит от модели ПК и составляет обычно 256 Кб.

Внешняя память. Устройства внешней памяти весьма разнообразны. Предлагаемая классификация учитывает тип носителя, т.е. материального объекта, способного хранить информацию.

Контроллеры служат для обеспечения прямой связи с ОП, минуя МП, они используются для устройств быстрого обмена данными с ОП — НГМД, НЖД, дисплей и др., обеспечения работы в групповом или сетевом режиме. Клавиатура, дисплей, мышь являются медленными устройствами, поэтому они связаны с системной платой контроллерами и имеют в ОП свои отведенные участки памяти.

Порты бывают входными и выходными, универсальными (ввод — вывод), они служат для обеспечения обмена информацией ПК с внешними, не очень быстрыми устройствами. Информация, поступающая через порт, направляется в МП, а потом в ОП. Выделяют два вида портов:

— последовательный — обеспечивает побитный обмен информацией, обычно к такому порту подключают модем;

— параллельный — обеспечивает побайтный обмен информацией, к такому порту подключают принтер. Современные ПК обычно оборудованы 1 параллельным и 2 последовательными портами.

Видеомониторы — устройства, предназначенные для вывода информации от ПК пользователю. Мониторы бываютмонохромные(зеленое или янтарное изображение, большая разрешающая способность) ицветные. Самые качественные RGB-мониторы, обладают высокой разрешающей способностью для графики и цвета. Используется тот же принцип электронной лучевой трубки как у телевизора. В портативных ПК используют электролюминесцентные илижидкокристаллические панели. Мониторы могут работать в текстовом и графическом режимах. В текстовом режиме изображение состоит из знакомест — специальных знаков, хранимых в видеопамяти дисплея, а в графическом изображение состоит из точек определенной яркости и цвета. Основные характеристики видеомониторов — разрешающая способность (от 600х350 до 1024х768 точек), число цветов (для цветных) -от 16 до 256, частота кадров фиксированная 60 Гц.

Принтеры — это устройства вывода данных из ЭВМ, преобразовывающие информационные ASCII-коды в соответствующие им графические символы и фиксирующие эти символы на бумаге. Принтеры — наиболее развитая группа внешних устройств, насчитывается более 1000 модификаций.

Принтеры бывают черно-белые или цветные по способу печати они делятся на:

— матричные — в этих принтерах изображение формируется из точек ударным способом, игольчатая печатающая головка перемещается в горизонтальном направлении, каждая иголочка управляется электромагнитом и ударяет бумагу через красящую ленту. Количество игл определяет качество печати (от 9 до 24), скорость печати 100-300 символов/сек, разрешающая способность 5 точек на мм;

— струйные — в печатающей головке имеются вместо иголок тонкие трубочки — сопла, через которые на бумагу выбрасываются мельчайшие капельки чернил (12 — 64 сопла),скорость печати до 500 символов/сек,разрешающая способность — 20 точек на мм;

— термографические — матричные принтеры, оснащенные вместо игольчатой печатающей головки головкой с термоматрицей, при печати используется специальная термобумага;

— лазерные — используется электрографический способ формирования изображений, лазер служит для создания сверхтонкого светового луча, вычерчивающего на поверхности светочувствительного барабана контуры невидимого точечного электронного изображения. После проявления изображения порошком красителя (тонера), налипающего на разряженные участки, выполняется печать — перенос тонера на бумагу и закрепление изображения на бумаге при помощи высокой температуры.Разрешение у таких принтеров до 50 точек/мм, скорость печати — 1000 символов/сек.

Сканеры — устройства ввода в ЭВМ информации непосредственно с бумажного документа. Можно вводить тексты, схемы, рисунки, графики, фотографии и другую информацию. Файл, создаваемый сканером в памяти ЭВМ называется битовой картой.

Манипуляторы — компьютерные устройства, управляемые руками оператора:

— мышь — устройство для определения относительных координат (смещения относительно предыдущего положения или направления) движения руки оператора. Относительные координаты передаются в компьютер и при помощи специальной программы могут вызывать перемещения курсора на экране. Для отслеживания перемещения мыши используются различные виды датчиков. Самый распространенный — механический (шарик, к которому прикасаются несколько валиков), существует еще оптический датчик, обеспечивающий более высокую точность считывания координат;

— джойстик — рычажный указатель — устройство для ввода направления движения руки оператора, их чаще используют для игр на компьютере;

— дигитайзер или оцифровывающий планшет — устройство для точного ввода графической информации (чертежей, графиков, карт) в компьютер. Он состоит из плоской панели (планшета) и связанного с ней ручного устройства — пера. Оператор ведет вдоль графика перо, при этом абсолютные координаты поступают в компьютер.

Клавиатура — устройство для ввода информации в память компьютера. Внутри расположена микросхема, клавиатура связана с системной платой, нажатие любой клавиши продуцирует сигнал (код символа в системе ASCII -16-ричный порядковый номер символа в таблице), в памяти ЭВМ специальная программа по коду восстанавливает внешний вид нажатого символа и передает его изображение на монитор.

Конкретный набор компонент, входящих в данный компьютер, называется его конфигурацией. Минимальная конфигурация ПК необходимая для его работы включает в себя системный блок (там находятся МП, ОП, ПЗУ, НЖМД, НГМД), клавиатуру (как устройство ввода информации) и монитор (как устройство вывода информации).

§

Программное обеспечение (ПО, software) представляет собой набор специальных программ, позволяющих организовать обработку информации с использованием ПК.

Поскольку без ПО функционирование ПК невозможно в принципе, оно является неотъемлемой составной частью любого ПК и поставляется вместе с его аппаратной частью (hardware).

Программа– полное и точное описание последовательности действий (инструкций) компьютера по обработке информации, написанное на языке, понятном компьютеру.

Программное обеспечение (ПО) – совокупность специальных программ, облегчающих процесс подготовки задач к выполнению на ЭВМ и организующих прохождение их через машину, а также процедур, описаний, инструкций и правил вместе со всей связанной с этими компонентами документацией, используемых при эксплуатации вычислительной системы.

Назначение ПО:

— обеспечение работоспособности компьютера;

— облегчение взаимодействия пользователя с компьютером;

— сокращение цикла от постановки задачи до получения результата;

— повышение эффективности использования ресурсов компьютера.

Программное обеспечение позволяет:

— усовершенствовать организацию работы вычислительной системы с целью максимального использования ее возможностей;

— повысить производительность и качество труда пользователя;

— адаптировать программы пользователя к ресурсам конкретной вычислительной системы;

расширить ПО вычислительной системы.

Классификация программного обеспечения:

Дискретное (цифровое) представление информации

Вопросы самоконтроля

1. Что называют архитектурой ПК?

2. Что такое АЛУ?

3. Для чего предназначена ОЗУ?

4. Какие виды принтеров Вам известны?

5. Объясните понятие ПО.

6. Какие виды ПО Вам известны?

7. К какому виду ПО вы отнесете утилиты ОС?

Тема 3.2. Безопасность, гигиена, эргономика, ресурсосбережение. Защита информации, антивирусная защита.

ПЛАН:

Эргономика

Система гигиенических требований

Защита информации, антивирусная защита

Вопросы самоконтроля

Эргономика

Эргономика – наука о том, как люди с их различными физическими данными и особенностями жизнедеятельности взаимодействуют с оборудованием и машинами, которыми они пользуются.

Цель эргономики состоит в том, чтобы обеспечить комфорт, эффективность и безопасность при пользовании компьютерами уже на этапе разработки клавиатур, компьютерных плат, рабочей мебели и др. для устранения физического дискомфорта и проблем со здоровьем на рабочем месте.

В связи с тем, что всё больше людей проводят много времени перед компьютерными мониторами, ученые многих областей, включая анатомию, психологию и охрану окружающей среды, вовлекаются в изучение правильных, с точки зрения эргономики, условий работы.

Так называемые эргономические заболевания – быстрорастущий вид профессиональных болезней.

Если в организации рабочего места оператора ПК допускается несоответствие параметров мебели антропометрическим характеристикам человека, то это вызывает необходимость поддержания вынужденной рабочей позы и может привести к нарушениям в костно-мышечной и периферической нервной системе. Длительный дискомфорт в условиях недостаточной физической активности может вызывать развитие общего утомления, снижения работоспособности, боли в области шеи, спины, поясницы. У операторов часто диагностируются заболевания опорно-двигательного аппарата и периферической нервной системы: невриты, радикулиты, остеохондроз и др.

Главной частью профилактических мероприятий в эргономике является правильная посадка.

Негативные последствия работы за монитором возникают из-за того, что:

а) наш глаз предназначен для восприятия отражённого света, а не излучаемого, как в случае с монитором (телевизором),

б) пользователю приходится вглядываться в линии и буквы на экране, что приводит к повышенному напряжению глазных мышц.

Для нормальной работы нужно поместить монитор так, чтобы глаза пользователя располагались на расстоянии, равном полутора диагоналям видимой части монитора:

— не менее 50-60 см для 15″ монитора;

— не менее 60-70 см для 17″ монитора;

— не менее 70-80 см для 19″ монитора;

— не менее 80-100 см для 21″ монитора.

Если зрение не позволяет выдерживать это расстояние, тогда уменьшите разрешение изображения и увеличьте шрифты.
Оптимальная диагональ экрана для работ с текстовыми документами — 15″-17″ с разрешением 1024×768. Для графических работ необходим монитор 19″-21″ при разрешении 1280х1024 и выше. Для игр рекомендуется 17″-19″. Мониторы больших диагоналей приобретать не рекомендуется, т.к. от работы за слишком крупными мониторами, по словам пользователей, «глаза становятся квадратными».
От большого монитора необходимо сидеть дальше, чем от маленького. И в итоге угловая площадь монитора остается такой же. Но сфокусировать глаз на мелком изображении, находящемся в 1-1.5 метрах от глаза становится труднее, что ведет к перенапряжению зрительного аппарата. Чем крупнее объект на экране монитора, тем меньше утомляемость. Поэтому компьютерные игры с их рисованными фигурами утомляют меньше, чем цифры и буквы.

Экран монитора должен быть абсолютно чистым. Периодически и при необходимости протирайте его специальными салфетками.
Усталость от работы с монитором тем меньше, чем ниже яркость экрана и чем крупнее объекты на экране. Установите минимальную яркость, при которой можно без напряжения различать символы на экране. Учтите, что лучше увеличить шрифт или изображение, чем пододвинуться поближе к экрану или увеличить яркость. Современные операционные системы имеют для этого специальные средства. Шрифты на экране можно масштабировать, задавать минимальные размеры элементов рисунков и прочее.

2. Система гигиенических требований

Длительная работа с компьютером может приводить к расстройствам состояния здоровья. Кратковременная работа с компьютером, установленным с грубыми нарушениям гигиенических норм и правил, приводит к повышенному утомлению. Вредное воздействие компьютерной системы на организм человека является комплексным. Параметры монитора оказывают влияние на органы зрения. Оборудование рабочего места влияет на органы опорно-двигательной системы. Характер расположения оборудования в компьютерном классе и режим его использования влияет как на общее психофизиологическое состояние организма, так и им органы зрения.

Рефераты:  Особенности связей с общественностью в современных маркетинговых коммуникациях – тема научной статьи по экономике и бизнесу читайте бесплатно текст научно-исследовательской работы в электронной библиотеке КиберЛенинка

§

В требования к рабочему месту входят требования к рабочему столу, посадочному месту (стулу, креслу), Подставкам для рук и ног. Несмотря на кажущуюся простоту, обеспечить правильное размещение элементов компьютерной системы и правильную посадку пользователя чрезвычайно трудно. Полное решение проблемы требует дополнительных затрат, сопоставимых по величине со стоимостью отдельных узлов компьютерной системы, поэтому и в быту и на производстве этими требованиями часто пренебрегают.

Монитор должен быть установлен прямо перед пользователем и не требовать поворота головы или корпуса тела.

Дискретное (цифровое) представление информации

Рабочий стол и посадочное место должны иметь такую высоту, чтобы уровень глаз пользователя находился чуть выше центра монитора. На экран монитора следует смотреть сверху вниз, а не наоборот. Даже кратковременная работа с монитором, установленным слишком высоко, приводит к утомлению шейных отделов позвоночника.

Дискретное (цифровое) представление информации

Если при правильной установке монитора относительно уровня глаз выясняется, что ноги пользователя не могут свободно покоиться на полу, следует установить подставку для ног, желательно наклонную. Если ноги не имеют надежной опоры, это непременно ведет к нарушению осанки и утомлению позвоночника. Удобно, когда компьютерная мебель (стол и рабочее кресло) имеют средства для регулировки по высоте. В этом случае проще добиться оптимального положения.

Клавиатура должна быть расположена на такой высоте, чтобы пальцы рук располагались на ней свободно, без напряжения. Для работы рекомендуется использовать специальные компьютерные столы, имеющие выдвижные полочки для клавиатуры.

Дискретное (цифровое) представление информации

При длительной работе с клавиатурой возможно утомление сухожилий кистевого сустава. Известно тяжелое профессиональное заболевание — кистевой туннельный синдром, связанное с неправильным положением рук на клавиатуре.

При работе с мышью рука не должна находиться на весу. Локоть руки или хотя бы запястье должны иметь твердую опору. Если предусмотреть необходимое расположение рабочего стола и кресла затруднительно, рекомендуется применить коврик для мыши, имеющий специальный опорный валик. Нередки случаи, когда в поисках опоры для руки (обычно правой) располагают монитор сбоку от пользователя (соответственно, слева), чтобы он работал вполоборота, опирая локоть или запястье правой руки о стол. Этот прием недопустим. Монитор должен обязательно находиться прямо перед пользователем.

§

Человеку свойственно ошибаться. Любое техническое устройство также подвержено сбоям, поломкам, влиянию помех. Ошибка может произойти при реализации любого информационного процесса. Велика вероятность ошибки при кодировании информации, её обработке и передаче. Результатом ошибки может стать потеря нужных данных, принятие ошибочного решения, аварийная ситуация.

В обществе хранится, передаётся и обрабатывается огромное количество информации и отчасти поэтому современный мир очень хрупок, взаимосвязан и взаимозависим. Информация, циркулирующая в системах управления и связи, способна вызвать крупномасштабные аварии, военные конфликты, дезорганизацию деятельности научных центров и лабораторий, разорение банков и коммерческих организаций. Поэтому информацию нужно уметь защищать от искажения, потери, утечки, нелегального использования.

Пример. В 1983 году произошло наводнение в юго-западной части США. Причиной стал компьютер, в который были введены неверные данные о погоде, в результате чего он дал ошибочный сигнал шлюзам, перекрывающим реку Колорадо.

Пример. В 1971 году на нью-йоркской железной дороге исчезли 352 вагона. Преступник воспользовался информацией вычислительного центра, управляющего работой железной дороги, и изменил адреса назначения вагонов. Нанесённый ущерб составил более миллиона долларов.

Развитие промышленных производств, принесло огромное количество новых знаний, и одновременно возникло желание часть этих знаний хранить от конкурентов, защищать их. Информация давно уже стала продуктом и товаром, который можно купить, продать, обменять на что-то другое. Как и всякий товар, она требует применения специальных методов для обеспечения сохранности.

В информатике в наибольшей степени рассматриваются основные виды защиты информации при работе на компьютере и в телекоммуникационных сетях.

Компьютеры — это технические устройства для быстрой и точной (безошибочной) обработки больших объёмов информации самого разного вида. Но, несмотря на постоянной повышение надёжности их работы, они могут выходить из строя, ломаться, как и любые другие устройства, созданные человеком. Программное обеспечение также создается людьми, способными ошибаться.

Конструкторы и разработчики аппаратного и программного обеспечения прилагают немало усилий, чтобы обеспечить защиту информации:

— от сбоев оборудования;

— от случайной потери или искажения информации, хранящейся в компьютере;

— от преднамеренного искажения, производимого, например, компьютерными вирусами;

— от несанкционированного (нелегального) доступа к информации (её использования, изменения, распространения).

К многочисленным, далеко не безобидным ошибкам компьютеров добавилась и компьютерная преступность, грозящая перерасти в проблему, экономические, политические и военные последствия которой могут стать катастрофическими.

При защите информации от сбоев оборудования используются следующие основные методы:

— периодическое архивирование программ и данных. Причем, под словом «архивирование» понимается как создание простой резервной копии, так и создание копии с предварительным сжатием (компрессией) информации. В последнем случае используются специальные программы-архиваторы (Arj, Rar, Zip и др.);

-автоматическое резервирование файлов. Если об архивировании должен заботиться сам пользователь, то при использовании программ автоматического резервирования команда на сохранение любого файла автоматически дублируется и файл сохраняется на двух автономных носителях (например, на двух винчестерах). Выход из строя одного из них не приводит к потере информации. Резервирование файлов широко используется, в частности, в банковском деле.

Защита от случайной потери или искажения информации, хранящейся в компьютере, сводится к следующим методам:

автоматическому запросу на подтверждение команды, приводящей к изменению содержимого какого-либо файла. Если вы хотите удалить файл или разместить новый файл под именем уже существующего, на экране дисплея появится диалоговое окно с требованием подтверждения команды либо её отмены;

установке специальных атрибутов документов. Например, многие программы-редакторы позволяют сделать документ доступным только для чтения или скрыть файл, сделав недоступным его имя в программах работы с файлами;

возможности отменить последние действия. Если вы редактируете документ, то можете пользоваться функцией отмены последнего действия или группы действий, имеющейся во всех современных редакторах. Если вы ошибочно удалили нужный файл, то специальные программы позволяют его восстановить, правда, только в том случае, когда вы ничего не успели записать поверх удаленного файла;

разграничению доступа пользователей к ресурсам файловой системы, строгому разделению системного и пользовательского режимов работы вычислительной системы.

Защита информации от преднамеренного искажения часто еще называется защитой от вандализма.

Проблема вандализма заключается в появлении таких бедствий, как компьютерные вирусы и компьютерные червяки. Оба этих термина придуманы более для привлечения внимания общественности к проблеме, а не для обозначения некоторых приёмов вандализма.

Компьютерный вирус представляет собой специально написанный небольшой по размерам фрагмент программы, который может присоединяться к другим программам (файлам) в компьютерной системе. Например, вирус может вставить себя в начало некоторой программы, так что каждый раз при выполнении этой программы первым будет активизироваться вирус. Во время выполнения вирус может производить намеренную порчу, которая сейчас же становится заметной, или просто искать другие программы, к которым он может присоединить свои копии. Если «заражённая» программа будет передана на другой компьютер через сеть или дискету, вирус начнёт заражать программы на новой машине, как только будет запущена переданная программа. Таким способом вирус переходит от машины к машине. В некоторых случаях вирусы потихоньку распространяются на другие программы и не проявляют себя, пока не произойдёт определённое событие, например, наступит заданная дата, начиная с которой они будут «разрушать» всё вокруг. Разновидностей компьютерных вирусов очень много. Среди них встречаются и невидимые, и самомодифицирующиеся.

Термин «червяк» обычно относится к автономной программе, которая копирует себя по всей сети, размещаясь в разных машинах. Как и вирусы, эти программы могут быть спроектированы для самотиражирования и для проведения «диверсий».

Для защиты от вирусов можно использовать:

— общие методы защиты информации, которые полезны также как страховка от физической порчи дисков, неправильно работающих программ или ошибочных действий пользователя;

— профилактические меры, позволяющие уменьшить вероятность заражения вирусом;

— специализированные антивирусные программы.

Многие методы защиты информации от несанкционированного (нелегального) доступа возникли задолго до появления компьютеров.

Одним из таких методов является шифрование.

Проблема защиты информации путем её преобразования, исключающего её прочтение посторонним лицом, волновала человеческий ум с давних времен. История криптологии (kryptos — тайный, logos — наука) — ровесница истории человеческого языка. Более того, письменность сама по себе была вначале криптографической системой, так как в древних обществах ею владели только избранные. Священные книги Древнего Египта, Древней Индии тому примеры. Криптология разделяется на два направления — криптографию и криптоанализ. Цели этих направлений прямо противоположны. Криптография занимается поиском и исследованием методов шифрования информации. Она даёт возможность преобразовывать информацию таким образом, что её прочтение (восстановление) возможно только при знании ключа. Сфера интересов криптоанализа — исследование возможностей расшифровки информации без знания ключей.

Ключ — информация, необходимая для беспрепятственного шифрования и дешифрования текста.

Первые криптографические системы встречаются уже в начале нашей эры. Так, Цезарь в своей переписке уже использовал шифр, получивший его имя. Бурное развитие криптографические системы получили в годы первой и второй мировых войн. Появление вычислительной техники ускорило разработку и совершенствование криптографических методов.

Основные направления использования этих методов — передача конфиденциальной информации по каналам связи (например, по электронной почте), установление подлинности передаваемых сообщений, хранение информации (документов, баз данных) на носителях в зашифрованном виде.

Проблема использования криптографических методов в современных информационных системах становится в настоящее время особенно актуальной. С одной стороны, расширилось использование телекоммуникационных сетей, по которым передаются большие объёмы информации государственного, коммерческого, военного и частного характера, не допускающего возможность доступа к ней посторонних лиц.С другой стороны, появление новых мощных аппаратных и программных средств, эффективных технологий дешифрования снизило надёжность криптографических систем, ещё недавно считавшихся практически нераскрываемыми.

Другим возможным методом защиты информации от несанкционированного доступа является применение паролей.

Пароли позволяют контролировать доступ как к компьютерам, так и к отдельным программам или файлам. К сожалению, иногда пароль удается угадать, тем более, что многие пользователи в качестве паролей используют свои имена, имена близких, даты рождения.

Существуют программные средства от «вскрытия» паролей. Чтобы противостоять попыткам угадать пароль, операционные системы могут быть спроектированы таким образом, чтобы отслеживать случаи, когда кто-то многократно употребляет неподходящие пароли (первый признак подбора чужого пароля). Кроме того, операционная система может сообщать каждому пользователю в начале его Сеанса, когда в последний раз использовалась его учётная запись. Этот метод позволяет пользователю обнаружить случаи, когда кто-то работал в системе под его именем. Более сложная защита (называемая ловушкой) — это создание у взломщика иллюзии успешного доступа к информации на время, пока идет анализ, откуда появился этот взломщик.

Одной из распространённых форм нарушения информационного права является незаконное копирование программ и данных, в частности находящихся на коммерчески распространяемых носителях информации.

Для предотвращения нелегального копирования файлов используются специальные программно-аппаратные средства, например «электронные замки», позволяющие сделать с дискеты не более установленного числа копий, или дающие возможность работать с программой только при условии, что к специальному разъёму системного блока подключено устройство (обычно микросхема), поставляемое вместе с легальными копиями программ. Существуют и другие методы защиты, в частности, административные и правоохранительные.

Вопросы самоконтроля

1. Перечислите основные негативные последствия работы за монитором

2. Объясните цель эргономики

3. Что является сильными источниками электромагнитных излучений?

Перечислите основные методы используемые при защите информации от сбоев оборудования.

4. Что такое «Червяк»?

5. Какие методы применяют для защиты от вирусов?

§

Для копирования или пе­ремещения текста необходимо выделить фрагмент текста и вы­полнить одно из следующих действий.

Чтобы переместить объект, нажмите кнопку ВырезатьДискретное (цифровое) представление информации на панели инструментов Стандартная.

Чтобы скопировать объект, нажмите кнопку КопироватьДискретное (цифровое) представление информации на панели инструментов Стандартная.

Чтобы переместить или скопировать объект в другой документ, перейдите в нужный документ, щелкните место вставки объекта и на панели инструментов Стандартнаянажмите кнопку Вста­витьДискретное (цифровое) представление информации .

Чтобы определить формат вставляемых элементов, выберите команду, нажав кнопку Вставить, которая отображается под встав­ленным элементом.

Для копирование текста можно использовать команды Прав­ка/Копироватьи Правка/Вставить.

Восстановление фрагмента текста.

Все мы иногда меняем свои намерения. Если возникает необходимость восстановить фрагмент текста, который перед этим был удален, то можно воспользо­ваться одним из двух способов:

• выбрать команду Правка/ Отменить ввод;

• щелкнуть по кнопке ОтменитьДискретное (цифровое) представление информации.

§

В документах Word можно использовать два типа графических объектов рисунки и изображения. Эти объекты можно определить следующим образом:

Рисунки – объекты векторной природы. Простейшие средства для их создания есть в самом текстовом процессоре. Изображения – растровые объекты. Текстовый процессор не имеет средств для их создания, поэтому они вставляются как внешние объекты. Рисунки всегда внедрены в документ – их можно редактировать непосредственно по месту расположения. Изображения вставляются в документ методом связывания или внедрения. Их редактирование средствами текстового процессора возможно, но только в ограниченных пределах.

Создание и редактирование рисунков. Для работы с векторными рисунками служит панель инструментов Автофигуры. Здесь представлены заготовки для создания линий, геометрических фигур, фигурных стрелок и прочего. При создании и редактировании векторных объектов возможно изменение их размера, цвета и толщины линий, способа заливки, а также задание поворота. Для создания текстовых элементов, присоединенных к автофигурам или рисункам, служит специальное средство Надпись из раздела Вставка. Создание надписи применяется к готовым автофигурам. В поле надписи вводят необходимый текст, после чего надпись можно редактировать. Ее размер подгоняют под размер 23 содержащегося в ней текста перетаскиванием маркеров. Создав объект Надпись его можно сгруппировать с рисунком, и тогда они будут представлять цельную композицию. Для автофигур есть специальное средство создания текстового оформления – текст может размещаться в поле автофигуры. Эта операция выполняется командой. Добавить текст в контекстном меню автофигуры. Работа с клипартами. Создание достаточно сложных композиций при помощи автофигур может быть очень трудоемким. В таких случаях используют готовые коллекции рисунков (клипартов). Работа с изображениями. Для добавления изображений в документ используется метод вставки из внешнего источника. При этом используется кнопка Рисунок на панели инструментов Вставка. Взаимодействие изображения с текстом. Основная часть инструментов для настройки свойств изображений в текстовом документе расположена на панели инструментов Формат. Как правило, при выборе рисунка в тексте документа эта панель открывается автоматически. По способу взаимодействия с текстом выделяют два основных типа изображений: внедренные в строку (inline) и свободные (floating). Изображения первого типа можно условно рассматривать как отдельные символы: при движении текста в процессе редактирования изображение перемещается вместе с ним и остается в том месте текста, куда его поместили. Положение свободного изображения на странице не связано с позицией ввода. Изображение взаимодействует с текстом посредством обтекания.

Контрольные вопросы

1. Дайте определение понятиям «Редактирование» и «Форматирование». В чем состоит их отличие?

2. Перечислите основные приемы форматирования текста.

3. Дайте определение стиля. Какие параметры определяет стиль абзаца?

4. Какие параметры задаются при форматировании абзаца?

5. Какие параметры задаются при разделении текста на колонки?

6. Какие типы графических объектов могут использоваться в текстовом процессоре?

7. Какие приемы и средства используют при создании и редактировании векторных объектов в текстовом процессоре?

8. Дайте определение клипарта. Опишите порядок редактирования клипарта?

9. Назовите основные методы вставки изображений.

10. Какие операции настройки изображения вы знаете?

Тема 4.2. Возможности динамических (электронных) таблиц.

ПЛАН:

1. ЭТ как информационный объект: характерные особенности, назначение.

§

Обучение работе с Excel необходимо начинать с изучения окна приложения Excel. При запуске Excel открывается окно приложения, в котором отображается новая рабочая книга – Книга 1.
Окно приложения Excel имеет пять основных областей:

  • строка меню;
  • панели инструментов;
  • строка состояния;
  • строка ввода;
  • область окна рабочей книги.

Дискретное (цифровое) представление информации

Основная обработка данных в Excel осуществляется при помощи команд из строки меню. Панели инструментов Стандартная и Форматированиеявляются встроенными панелями MS Excel, которые располагаются под строкой меню и содержат определенные наборы пиктограмм (кнопок). Основная часть пиктограмм предназначена для выполнения наиболее часто используемых команд из строки меню.

Строка формул в Excel используется для ввода и редактирования значений, формул в ячейках или диаграммах. Поле имени – это окно слева от строки формул, в котором выводится имя активной ячейки. Пиктограммы: X, V, fx, расположенные слева от строки формул — это кнопки отмены, ввода и вставка функции соответственно.

Строка состояния окна приложения Excel расположена в нижней части экрана. Левая часть строки состояния указывает сведения о состоянии рабочей области электронной таблицы (Готово, Ввод, Правка, Укажите). Кроме того, в левой части строки состояния кратко описываются результаты выполненной команды. В правой части строки состояния выводятся результаты вычислений (при выполнении автоматических вычислений с помощью контекстного меню строки состояния) и отображаются нажатые клавиш Ins, Caps Lock, Num Lock, Scroll Lock.

Основные понятия электронной таблицы: заголовок столбца, заголовок строки, ячейка, имя ячейки, маркер выделения, маркер заполнения, активная ячейка, строка формул, поле имени, активная область листа.

Рабочая область электронной таблицы состоит из строк и столбцов, имеющих свои имена.

Имена строк – это их номера. Нумерация строк начинается с 1 и заканчивается максимальным числом, установленным для данной программы. Имена столбцов – это буквы латинского алфавита сначала от А до Z , затем от АА до AZ, ВА до BZ и т.д.

Максимальное количество строк и столбцов электронной таблицы определяется особенностями используемой программы и объемом памяти компьютера, например, в табличном процессоре Excel 256 столбцов и более 16 тысяч строк. В таблице используются столбцы (256) и строки (16384).

Пересечение строки и столбца образует ячейку электронной таблицы, имеющую свой уникальный адрес. Для указания адресов ячеек в формулах используются ссылки (например, А6 или D8).

Ячейка – область, определяемая пересечением столбца и строки электронной таблицы, имеющая свой уникальный адрес.

Адрес ячейки определяется именем (номером) столбца и именем (номером) строки, на пересечении которых находится ячейка, например А10. Ссылка – указание адреса ячейки.

Активной ячейка — это выделенная ячейка, имя которой отображается в поле имени. Маркером выделения называется полужирная рамка вокруг выделенной ячейки. Маркер заполнения — это черный квадрат в правом нижнем углу выделенной ячейки.

Активная область листа — это область, которая содержит введенные данные.

Адрес блока ячеек задается указанием ссылок первой и последней его ячеек, между которыми ставится разделительный символ – двоеточие. Если блок имеет вид прямоугольника, то его адрес задается адресами левой верхней и правой нижней ячеек, входящих в блок.

Блок используемых ячеек может быть указан двумя путями: либо заданием с клавиатуры начального и конечного адресов ячеек блока, либо выделением соответствующей части таблицы при помощи левой клавиши мыши.

Пример задания адресов ячейки и блоков в электронной таблице:

адрес ячейки, находящейся на пересечении столбца F и строки 9, выражается ссылкой F9;

адрес блока, образованного в виде части строки 1 — B1:E1;

адрес блока, образованного в виде столбца C — C1:C21;

адрес блока, образованного в виде прямоугольника — A3:G10

Формулы – это выражение, начинающееся со знака равенства и состоящее из числовых величин, адресов ячеек, функций, имен, которые соединены знаками арифметических операций. К знакам арифметических операций, которые используются в Excel относятся: сложение; вычитание; умножение; деление; возведение в степень.

Некоторые операции в формуле имеют более высокий приоритет и выполняются в такой последовательности:

 возведение в степень и выражения в скобках;

 умножение и деление;

 сложение и вычитание.

§

ABS(число) – возвращает модуль числа;

SIN(число), COS(число), TAN(число) – прямые тригонометрические функции числа;

ASIN(число), ACOS(число), ATAN(число) – обратные тригонометрические функции числа;

EXP(число), LN(число), LOG10(число) – экспонента, натуральный логарифм, десятичный логарифм числа;

ФАКТР(число) – возвращает значение факториала числа;

LOG(число;основание) – логарифм от числа по основанию;

КОРЕНЬ – вычисление квадратного корня;

ОКРУГЛ(число;число_разрядов) – округляет число до указанного числа разрядов;

ПИ() – выдает значение числа Дискретное (цифровое) представление информации ;

СУММ(диапазон_ячеек) – считает сумму значений из диапазона ячеек;

ПРОИЗВЕД(диапазон_ячеек) – считает произведение значений из диапазона ячеек;

СТЕПЕНЬ(число;степень) – возвращает результата возведения числа в степень;

СЛУЧМЕЖДУ(нижн_граница;верхн_граница) – выдает случайное число между нижней границей и верхней границей (изменяется при пересчете);

СЛЧИС() – возвращает случайное число от 0 до 1 (изменяется при пересчете);

СУММЕСЛИ(диапазон;критерий;диапазон_суммирования) – суммирует значения, расположенные в диапазоне суммирования, если соответствующие ячейки диапазона соответствуют указанному критерию; критерии: “>10”, “=100”, “=Сумма”;

МОПРЕД(диапазон) – возвращает определитель матрицы, расположенной в диапазоне ячеек (диапазон должен быть квадратной матрицей);

МОБР(диапазон) – возвращает обратную матрицу для матрицы, заданной в диапазоне (диапазон должен быть квадратной матрицей); для отображения результата нужно выделить диапазон ячеек равный исходному диапазону начиная с ячейки, где расположена функция МОБР, затем нажать F2, затем нажать комбинацию CTRL SHIFT ENTER (работа с массивами данных);

МУМНОЖ(диапазон1; диапазон2) – возвращает матрицу, полученную в результате перемножения матриц, заданных в диапазоне1 и диапазоне2 (работа с массивами, выделяемые диапазоны должны удовлетворять требованиям перемножения матриц).

Логические функции

ЕСЛИ(логическое_выражение;значение_если_истина;значение_если_ложь) – проверяет, выполняется ли логическое выражение, если да, то выводит значение если истина, нет – значение если ложь;

И(логич_знач1;логич_знач2;…) – возвращает значение ИСТИНА, если все логические значения являются истинными, в противном случае возвращает значение ЛОЖЬ;

ИЛИ(логич_знач1;логич_знач2;…) – возвращает значение ИСТИНА, если хотя бы одно логическое значение является истинными, в противном случае возвращает значение ЛОЖЬ.

§

Таблица — это объект, который определяется и используется для хранения данных. Каждая таблица включает информацию об объекте определенного типа. Как уже известно, таблица содержит поля (столбцы) и записи (строки). Работать с таблицей можно в двух основных режимах: в режиме конструктора и в режиме таблицы.

Запрос — это объект, который позволяет пользователю получить нужные данные из одной или нескольких таблиц. Можно создать запросы на выбор, обновление, удаление или на добавление данных. С помощью запросов можно создавать новые таблицы, используя данные уже существующих одной или нескольких таблиц.

По сути дела, запрос — это вопрос, который пользователь задает Access о хранящейся в базе данных информации. Работать с запросами можно в двух основных режимах: в режиме конструктора и в режиме таблицы.

Здесь надо вспомнить о том, что ответы на запросы получаются путем “разрезания” и “склеивания” таблиц по строкам и столбцам, и что ответы будут также иметь форму таблиц. В режиме конструктора формируется вопрос к базе данных.

Форма — это объект, в основном, предназначенный для удобного ввода отображения данных. Надо отметить, что в отличие от таблиц, з формах не содержится информации баз данных (как это может показаться на первый взгляд). Форма — это всего лишь формат (бланк) показа данных на экране компьютера. Формы могут строиться только на основе таблиц или запросов. Построение форм на основе запросов позволяет представлять в них информацию из нескольких таблиц.

В форму могут быть внедрены рисунки, диаграммы, аудио (звук) и видео (изображение).

Отчет — это объект, предназначенный для создания документа, который впоследствии может быть распечатан или включен в документ другого приложения. Отчеты, как и формы, могут создаваться на основе запросов и таблиц, но не позволяют вводить данные.

Основные типы данных:

Тип данных Описание Объем занимаемой памяти
Текстовый Обычная текстовая строка До 255 байт
Поле MEMO Многострочный текст До 65 535 байт
Числовой Числа, как целые, так и вещественные От 1 до 8 байт
Дата/время Дата и/или время 8 байт
Денежный Денежные суммы 8 байт
Счетчик Уникальное целое число, указывающее порядковый номер записи в таблице 4 байта
Логический Логические значение (True/False) 1 бит
Поле объекта OLE Объекты других приложений Windows (1 объект) До 1 Гбайт
Гиперссылка Ссылка на файл (на данном ПК, в интернете или лок. Сети) До 2048 байт
Вложение Объекты других приложений Windows (несколько объектов) До 2 Гбайт

Контрольные вопросы

1. Что такое БД и СУБД?

2. Перечислите основные классификации БД?

3. Перечислите основные функции БД?

4. Приведите основные примеры БД?

§

ПЛАН:

Способы представления графической информации

2. Профессиональная графика по профилю специальности 08.02.01 «Строительство и эксплуатация зданий и сооружений»

Понятие мультимедиа. Программная реализация задач мультимедиа. Представление графической и мультимедийной информации с помощью компьютерных презентаций (на примере PowerPoint)

Контрольные вопросы

Способы представления графической информации

2.

Компьютерная графика — раздел информатики, предметом которого является работа на компьютере с графическими изображениями (рисунками, чертежами, фотографиями, видеокадрами и пр.).

Графический редактор — прикладная программа, предназначенная для создания, редактирования и просмотра графических изображений на компьютере.

Виды компьютерной графики:

1. Растровая

2. Векторная

3. Фрактальная

Они отличаются принципами формирования изображения при отображении на экране монитора или при печати на бумаге.

Растровая графика

Применяется при разработке электронных (мультимедийных) и полиграфических изданий. Для этого сканируют иллюстрации, фотографии, вводятся изображения с цифровых фотоаппаратов.

Растровое изображение – это своего рода мозаика, только вместо кусочков мозаики точки.

Основной элемент растрового экранного изображения – точка, называемая пикселем. Чтобы увидеть эти точки, нужно многократно увеличить изображение.

Дискретное (цифровое) представление информации

Растр (от англ. raster) – представление изображения в виде двумерного массива точек (пикселов), упорядоченных в ряды и столбцы

Для каждой точки изображения отводится одна или несколько ячеек памяти. Чем больше растровое изображение, тем больше памяти оно занимает.

Свойства растровой графики:

  1. Большие объемы данных, которые нужно хранить и обрабатывать.
  2. Невозможность увеличения изображения для рассмотрения деталей. Этот эффект называетсяпикселизацией

Дискретное (цифровое) представление информации

Важная характеристика экранного изображения – разрешение (resolution).

Рефераты:  ИСТОРИЯ СОЗДАНИЯ АНАБОЛИЧЕСКИХ АНДРОГЕННЫХ СТЕРОИДОВ (СИЛЬНОДЕЙСТВУЮЩИХ ВЕЩЕСТВ) - Современные проблемы науки и образования (сетевое издание)

Разрешение – это количество пикселей, приходящихся на данное изображение. Оно измеряется в пикселях на дюйм (dots per inch) – dpi. Чем выше разрешение, тем качественнее изображение, но больше его файл. За норму принимается 72 пикселя на дюйм (экранное разрешение). Экран и печатающее устройство имеют свои собственные разрешения.

Файлы с форматами растрового типа: имеют расширения: *.bmp, *.pcx, *.gif , *.msp , *.img

2. Профессиональная графика по профилю специальности 08.02.01 «Строительство и эксплуатация зданий и сооружений»

Данная профессия требует большого количества знаний в нормах проектирования, в современных технология строительства, знания разнообразия строительных материалов, а также владения специальными программными пакетами такими как AutoCAD, ArchiCAD, Компас, Adobe Photoshop, 3D Studio MAX и другие, которые постоянно совершенствуются в наш стремительно развивающийся век.

Программы, подобные Adobe Photoshop, Illustrator, и т. д., используются в данной профессии для создания высококачественного фото-подобного изображения и улучшения 2D-графики, их применяют при создании генпланов, планов, фасадов и для получения электронных рисунков. Photoshop широко используется современными художниками и фотографами, людьми, профессия которых непосредственно связана с работой над цифровыми изображениями, в то время как Illustrator применяют в web-дизайне и дизайне логотипов, где преимущество имеет векторная графика. Программное обеспечение AutoCAD, ArchiCAD, Компас и 3D Studio MAX — для построения чертежей и создания 3-хмерных моделей. 3D Studio MAX больше используется, для создания объемной графики и анимации, художниками и специалистами в области мультимедиа, таким образом, к нашей специальности, данное ПО, применяется как средство визуализации пространства. AutoCAD, ArchiCAD и Компас — это многофункциональные графические редакторы, которые относятся к автоматизированным системам, реализующие информационную технологию выполнения функций проектирования — САПР — системы автоматизированного проектирования.

Основная цель создания САПР — повышение эффективности труда инженеров, включая: сокращения трудоёмкости проектирования и планирования; сокращения сроков проектирования; сокращения себестоимости проектирования и изготовления, уменьшение затрат на эксплуатацию; повышения качества и технико-экономического уровня результатов проектирования; сокращения затрат на натурное моделирование и испытания.

Самой главной программой, в профессиональной деятельности архитектора, является ArchiCAD. Он находится на первом месте в списке подобных программ, ArchiCAD прост в использовании, обучении и работе.

ArchiCAD представляет собой единую объектно-ориентированную трехмерную систему автоматизированного проектирования. Он предназначен для решения архитектурно-строительных задач. В основу принципа его работы положена концепция «Виртуального здания» — модели, состоящей из трехмерных архитектурно-строительных элементов. Благодаря тому, что пользователь ArchiCAD работает с образами реальных объектов (стен, окон, дверей, балок, элементов мебели и строительных конструкций), он может максимально подробно составить модель проектируемого или уже существующего здания.

«Компас» — семейство систем автоматизированного проектирования с возможностями оформления проектной и конструкторской документации. Эти стандарты преимущественно используются на родине производителя, и абсолютно не распространены за пределами государства.

AutoCAD — двух- и трёхмерная система автоматизированного проектирования и черчения, разработанная компанией Autodesk. Данные ПО преподносят пользователю создание точных и аккуратных чертежей, в основном, данные виды используются в машиностроительных, и других профессиях, где 3-хмерное изображение используется в качестве наглядного просмотра результата, в то время как, ArchiCAD позволяет на любом этапе работы над проектом увидеть его в трехмерном виде, в разрезе, в перспективе, подобрать наиболее подходящие материалы и посчитать их расход. Возможно, даже создать мультипликационный ролик, изобразив спроектированное здание в его привязке к местности, провести заказчика по зданию, заглянув на каждый этаж и в каждую комнату, а также обойти или облететь здание вокруг. Таким образом, проект станет более наглядным и понятным заказчику.

§

Термин «мультимедиа» является латинизмом, проникшим из англоязычных источников в различные языки практически в первоначальной транскрипции. Происходит он от соединения латинских слов «multum» (много) и «media, medium» (средоточие, средство, способ). Таким образом, дословно «мультимедиа» означает «многие среды».

Понятие «мультимедиа» используется в различных областях деятельности человека. В компьютерной сфере это разработка сайтов, гипертекстовые системы, компьютерная графика, компьютерная анимация и т. д.; в средствах массовой информации – журналистика, в том числе и интернет-журналистика, речевые и социальные коммуникации и др.; в искусстве – сетевое искусство, компьютерная анимация, компьютерный видеомонтаж, режиссура звука, фильма и др.

В «Энциклопедии «Кирилла и Мефодия» мультимедиа определяется как электронный носитель информации, включающий несколько ее видов: текст, изображение, анимация и пр.

В словаре «Основные понятия и определения прикладной кибернетики» под мультимедиа понимается взаимодействие визуальных и аудио-эффектов под управлением интерактивного программного обеспечения. Обычно это означает сочетание в одном электронном ресурсе текста, звука и графики, а в последнее время все чаще – анимации и видео.

Программные среды для создания мультимедиа продуктов по своей природе очень разнообразны и зависят от сферы разработки, будь то создание звука, обработка видео, создание презентации или интерактивной анимации, обработка фото и т.д. Рассмотрим подробнее продукт от компании Adobe Flash. Adobe Flash (ранее Macromedia Flash), или просто Flash — мультимедийная платформа компании Adobe для создания веб-приложений или мультимедийных презентаций. Широко используется для создания рекламных баннеров, анимации, игр, а также воспроизведения на веб-страницах видео- и аудиозаписей. Платформа включает в себя ряд средств разработки, прежде всего Adobe Flash Professional и Adobe Flash Builder (ранее Adobe Flex Builder); а также программу для воспроизведения flash-контента — Adobe Flash Player. Adobe Flash позволяет работать с векторной, растровой и ограниченно с трёхмерной графикой, а также поддерживает двунаправленную потоковую трансляцию аудио и видео. Стандартным расширением для скомпилированных flash-файлов (анимации, игр и интерактивных приложений) является .SWF. Видеоролики в формате Flash представляют собой файлы с расширением FLV (при этом Flash в данном случае используется только как контейнер для видеозаписи). Расширение FLA соответствует формату рабочих файлов в среде разработки. Flash Player представляет собой виртуальную машину, на которой выполняется загруженный из Интернета код flash-программы. В основе анимации во Flash лежит векторный морфинг, то есть плавное «перетекание» одного ключевого кадра в другой. Это позволяет делать сложные мультипликационные сцены, задавая лишь несколько ключевых кадров. Основной недостаток flash-приложений — чрезмерная нагрузка на центральный процессор, связанная с неэффективностью виртуальной машины Flash Player.

PowerPoint

Многие люди используют презентации как для наглядной демонстрации каких-то данных на работе, так и в развлекательных целях, например, чтобы поздравить близкого человека с днем рождения. Она может быть создана в разных видах – слайдшоу, видео и любая другая анимация. Она может идти как беззвучно, так и с музыкальным или голосовым сопровождением. Так что, простор для творческого полета фантазии создателя здесь практически неограничен. Ну а самой популярной программой для их создания остается PowerPoint из стандартного набора Microsoft Office любой версии. В целом разобраться, как создать в PowerPoint презентацию несложно – нужно лишь получить несколько советов.

В первую очередь запустите программу, после чего щелкните по надписи «Файл» и выберите пункт «Новый…». Появится небольшое окно, в котором вы сможете выбрать, из какого количества слайдов будет состоять ваша работа. Если вы хотите упростить процесс, можно выбрать один из предложенных шаблонов – их довольно много. Если же ни один из них вас не устраивает, можно сконструировать собственный, уникальный шаблон.

Теперь используйте меню «Вставка», чтобы добавить подходящие изображения или музыкальное сопровождение. Если вы хотите добавить текст, то нужно использовать специальное меню. В свойствах всех слайдов пропишите, как долго он должен оставаться на экране. Можно установить время автоматически, а можно просто привязать смену кадров к щелчку мышкой. В некоторых случаях, чтобы создать презентацию PowerPoint, наиболее удобен второй вариант.

Чтобы добавить текст, войдите в меню «Формат». Здесь можно выбрать не только стиль шрифта и цвет, но и многочисленные эффекты, благодаря которым ваше детище станет более привлекательным и интересным для зрителей.

Если во время работы вам захотелось посмотреть результат – насколько удачно и правильно продвигается процесс, вы всегда можете кликнуть по клавише F5. Тут же начнется показ готовых слайдов. Когда показ будет завершен, щелкните кнопку Esc, чтобы закрыть появившийся черный экран. Также этой клавишей можно в любой момент прервать презентацию. Таким образом вы легко поймете, как создать PowerPoint презентацию и сможете сделать её довольно сложной и красочной.

Когда работа будет завершена, нужно войти в меню «Файл» и выбрать пункт «Сохранить». Дайте подходящее название файлу и сохраните его в наиболее удобной для вас папке.

Контрольные вопросы

1. Что такое компьютерная графика?

2. Какие виды графики Вам Известны?

3. Какие виды графики используются в Вшей профессиональной деятельности?

§

Тема 5.1. Передача информации. Локальные компьютерные сети. Глобальная компьютерная сеть Internet

ПЛАН:

1. Технические и программные средства Интернет – технологии

Локальные компьютерные сети

Глобальная компьютерная сеть Internet

Вопросы самоконтроля

1. Технические и программные средства Интернет – технологии

Интернет-технологии — технологии создания и поддержки различных информационных ресурсов в компьютерной сети Интернет: сайтов, блогов, форумов, чатов, электронных библиотек и энциклопедий.

В основе Интернет и Интернет-технологий лежат гипертексты и сайты, размещаемые в глобальной сети Интернет либо в локальных сетях ЭВМ.

Гипертексты — это тексты со гиперссылками на другие гипертексты, размещенные в Интернет или локальной сети ЭВМ.

Для записи гипертекстов используется язык разметки гипертекстов HTML, который воспринимается всеми браузерами на всех персональных компьютерах.

Язык HTML является международным стандартом, поэтому все гипертексты, единым образом воспринимаются и единым образом отображаются на всех персональных компьютерах во всем мире.

Для подготовки гипертекстов обычно используются визуальные гипертекстовые редакторы, в которых сразу видно — как будет выглядеть гипертекст на ЭВМ, и возможна вставка гиперссылок на сайты в Интернет.

Создание компьютерных сетей вызвано практической потребностью пользователей удаленных друг от друга компьютеров в одной и той же информации. Сети предоставляют пользователям возможность не только быстрого обмена информацией, но и совместной работы на принтерах и других периферийных устройствах, и даже одновременной обработки документов.

Компьютерная сеть — представляет собой систему распределенной обработки информации, состоящую как минимум из двух компьютеров, взаимодействующих между собой с помощью специальных средств связи.

Другими словами сеть представляет собой совокупность соединенных друг с другом ПК и других вычислительных устройств, таких как принтеры, факсимильные аппараты и модемы. Сеть дает возможность отдельным сотрудникам организации взаимодействовать друг с другом и обращаться к совместно используемым ресурсам; позволяет им получать доступ к данным, хранящимся на персональных компьютерах в удаленных офисах, и устанавливать связь с поставщиками.

Компьютеры, входящие в сеть выполняют следующие функции:

· Организация доступа к сети

· Управление передачей информации

· Предоставление вычислительных ресурсов и услуг абонентам сети.

Любая компьютерная сеть характеризуется: топологией, протоколами, интерфейсами, сетевыми техническими и программными средствами.

Топология компьютерной сети отражает структуру связей между ее основными функциональными элементами.

Сетевые технические средства – это различные устройства, обеспечивающие объединение компьютеров в единую компьютерную сеть.

Сетевые программные средства– осуществляют управление работой компьютерной сети и обеспечивают соответствующий интерфейс с пользователями.

§

Локальная сеть объединяет компьютеры, установленные в одном помещении (например, школьный компьютерный класс, состоящий из 8—12 компьютеров) или в одном здании.

В небольших локальных сетях все компьютеры обычно равноправны, т. е. пользователи самостоятельно решают, какие ресурсы своего компьютера (диски, каталоги, файлы) сделать общедоступными по сети. Такие сети называются одноранговыми.

Если к локальной сети подключено более десяти компьютеров, то одноранговая сеть может оказаться недостаточно производительной. Для увеличения производительности, а также в целях обеспечения большей надежности при хранении информации в сети некоторые компьютеры специально выделяются для хранения файлов или программ-приложений. Такие компьютеры называются серверами, а локальная сеть — сетью на основе серверов.
Каждый компьютер, подключенный к локальной сети, должен иметь специальную плату (сетевой адаптер). Между собой компьютеры (сетевые адаптеры) соединяются с помощью кабелей.

Региональные компьютерные сети

Локальные сети не позволяют обеспечить совместный доступ к информации пользователям, находящимся, например, в различных частях города. На помощь приходят региональные сети, объединяющие компьютеры в пределах одного региона (города, страны, континента).

Корпоративные компьютерные сети

Многие организации, заинтересованные в защите информации от несанкционированного доступа (например, военные, банковские и пр.), создают собственные, так называемые корпоративные сети. Корпоративная сеть может объединять тысячи и десятки тысяч компьютеров, размещенных в различных странах и городах (в качестве примера можно привести сеть корпорации Microsoft, MSN).

Глобальная компьютерная сеть Internet

4.

Глобальные сети (Wide Area Networks, WAN),которые также называют территориальными компьютерными сетями, служат для того, чтобы предоставлять свои сервисы большому количеству конечных абонентов, разбросанных по большой территории — в пределах области, региона, страны, континента или всего земного шара. Ввиду большой протяженности каналов связи построение глобальной сети требует очень больших затрат, в которые входит стоимость кабелей и работ по их прокладке, затраты на коммутационное оборудование и промежуточную усилительную аппаратуру, обеспечивающую необходимую полосу пропускания канала, а также эксплуатационные затраты на постоянное поддержание в работоспособном состоянии разбросанной по большой территории аппаратуры сети.

Интернет — это глобальная компьютерная сеть, объединяющая многие локальные, региональные и корпоративные сети и включающая в себя десятки миллионов компьютеров.

В каждой локальной или корпоративной сети обычно имеется, по крайней мере, один компьютер, который имеет постоянное подключение к Интернету с помощью линии связи с высокой пропускной способностью (сервер Интернета). Надежность функционирования глобальной сети обеспечивается избыточностью линий связи: как правило, серверы имеют более двух линий связи, соединяющих их с Интернетом.

Основу, «каркас» Интернета составляют более ста миллионов серверов, постоянно подключенных к сети, из которых в России насчитывается более трехсот тысяч (на начало 2001 г.).

К серверам Интернета могут подключаться с помощью локальных сетей или коммутируемых телефонных линий сотни миллионов пользователей сети.

Своим зарождением Интернет обязан Министерству обороны США и его секретному исследованию, проводимому в 1969 году с целью тестирования методов, позволяющих компьютерным сетям выжить во время военных действий с помощью динамической перемаршрутизации сообщений. Первой такой сетью была ARPAnet, объединившая три сети в Калифорнии с сетью в штате Юта по набору правил, названных Интернет-протоколом (Internet Protocol или, сокращенно, IP).

В 1972 был открыт доступ для университетов и исследовательских организаций, в результате чего сеть стала объединять 50 университетов и исследовательских организаций, имевших контракты с Министерством обороны США.

В 1973 сеть выросла до международных масштабов, объединив сети, находящиеся в Англии и Норвегии. Десятилетие спустя IP был расширен за счет набора коммуникационных протоколов, поддерживающих как локальные, так и глобальные сети. Так появился TCP/IP. Вскоре после этого, National Science Foundation (NSF) открыла NSFnet с целью связать 5 суперкомпьютерных центров. Одновременно с внедрением протокола TCP/IP новая сеть вскоре заменила ARPAnet в качестве «хребта» (backbone) Интернета.

Ну а как же Интернет стал столь популярен и развит, а толчок к этому, а также к превращению его в среду для ведения бизнеса дало появление World Wide Web (Всемирная Паутина, WWW, 3W, вэ-вэ-вэ, три даблъю) — системы гипертекста (hypertext), которая сделала путешествие по сети Интернет быстрым и интуитивно понятным.

Идея связывания документов через гипертекст впервые была предложена и продвигалась Тедом Нельсоном (Ted Nelson) в 1960-е годы, однако уровень существующих в то время компьютерных технологий не позволял воплотить ее в жизнь, хотя кто знает, чем бы всё закончилось, если бы эта идея нашла применение?!

Основы того, что мы сегодня понимаем под WWW, заложил в 1980-е годы Тим Бернерс-Ли (Tim Berners-Lee) в процессе работ по созданию системы гипертекста в Европейской лаборатории физики элементарных частиц (European Laboratary for Particle Physics, Европейский центр ядерных исследований).

В результате этих работ в 1990 научному сообществу был представлен первый текстовый браузер (browser), позволяющий просматривать связанные гиперссылками (hyperlinks) текстовые файлы on-line. Доступ к этому браузеру широкой публике был предоставлен в 1991, однако распространение его вне научных кругов шло медленно.

Новым историческим этапом в развитии Интернет обязан выходу первой Unix-версии графического браузера Mosaic в 1993 году, разработанного в 1992 Марком Андресеном (Marc Andreessen), студентом, стажировавшимся в Национальном центре суперкомпьютерных приложений (National Center for Supercomputing Applications, NCSA), США.

С 1994, после выхода версий браузера Mosaic для операционных систем Windows и Macintosh, а вскоре вслед за этим — браузеров Netscape Navigator и Microsoft Internet Explorer, берет начало взрывообразное распространение популярности WWW, и как следствие Интернета, среди широкой публики сначала в США, а затем и по всему миру.
В 1995 NSF передала ответственность за Интернет в частный сектор, и с этого времени Интернет существует в том виде, каким мы знаем его сегодня.

4. Вопросы самоконтроля:

1. Что такое компьютерная сеть?

2. Какими функциями обладают компьютеры подключенные к сети?

3. Что такое интернет технологии?

4. Где применяются корпоративные компьютерные сети?

5. Какие сети относятся к глобальным?

6. Какие сети называют локальными?

7. Для чего предназначен Интернет?

§

Рассмотрим виды сервисных услуг, предлагаемых глобальной сетью, а также основные методы поиска необходимой информации при помощи Интернета.

Сервисные службы Интернета – это виды услуг, которые оказываются серверами глобальной сети. На протяжении недолгой истории Интернета существовали разные виды сервисов, одни из которых в настоящее время уже не используются, другие постепенно теряют свою популярность, а третьи переживают рассвет.

Перечислим те из сервисов, которые не потеряли своей актуальности на данный момент:

  • World Wide Web– всемирная паутина – служба поиска и просмотра гипертекстовых документов, включающих в себя графику, звук и видео.
  • E-mail– электронная почта – служба передачи электронных сообщений.
  • Usenet, News – телеконференции, группы новостей – разновидность сетевой газеты или доски объявлений.
  • FTP– служба передачи файлов.
  • ICQ– служба для общения в реальном времени с помощью клавиатуры.
  • Telnet– служба удаленного доступа к компьютерам.

Рассмотрим три наиболее популярных службах:

· World Wide Web– всемирная паутина

· E-mail– электронная почта

· Usenet, News – телеконференции, группы новостей

1 служба — World Wide Web– всемирная паутина

WWW (World Wide Web, англ. Всемирная паутина) – это служба по­иска и просмотра гипертекстовых документов. Эти документы называются Web-страницы, а совокупность близких по смыслу или тематике и хранящихся вместе Web-страниц называ­ется – Web-сайт.

Web-страницы могут включать в себя текст, рисунки, анимацию, звук, видео, а также ак­тивные элементы – небольшие программы, оживляющие страницу, делающие ее интерак­тивной.

Идея гипертекста проста: гипертекст – это текст, содержащий ссылку на другой доку­мент, который может быть аналогичной Web-страницей.

Гипертекст представлен в виде гипер­ссылок, выделенных на странице обычно подчеркиванием, цветом, по которым доста­точно щелкнуть мышью, и будет осуществлен переход к другой Web-странице или загружен нужный файл. Именно потому, что страницы с помощью гиперссылок переплетены между собой, эту службу называют «паутина».

Для того чтобы читать или просматривать Web-страницы нужна специальная программа. Такие программы называют средствами просмотра Web или просто браузерами или обозревателем Web.Сегодня существует множество программ-браузеров, созданных различными компаниями. Наибольшее распространение и признание получили такие браузеры, как Internet Explorer, Opera, Mozilla

Пользуясь гипертекстовыми ссылками, можно бесконечно долго путешествовать в информационном пространстве Сети, переходя от одной Web-страницы к другой, но если учесть, что в мире созданы многие миллионы Web-страниц, то найти на них нужную информацию таким способом вряд ли удастся. На помощь приходят специальные поисковые системы (их еще называютпоисковыми машинами). Самыми распространенными и часто используемыми поисковыми системами в мире являются Google, Yahoo, Яндекс, Rambler, Мета (украинская)

WWW— это одна из служб Интернета, которая предлагает простой в использовании интерфейс и дает возможность пользователям, даже не слишком хорошо знающим компьютер, получать доступ к web-ресурсам в любой части Интернета. Эта служба занимает лидирующее место в Интернете.

2 служба — E-mail– электронная почта

Электронная почта появилась около 30 лет назад. На сегодняшний день она является самым массовым средством обмена информацией в сети Интернет. Умение получать и посылать электронную почту может пригодиться не только для общения с друзьями из других городов и стран, но и в деловой карьере. Например, при трудоустройстве можно быстро разослать своё резюме c помощью e-mail в различные фирмы. Кроме того, на многих сайтах, где нужно пройти регистрацию зачастую требуется указать свой e-mail. Одним словом, e-mail — очень полезная и удобная вещь.

С помощью e-mail можно посылать сообщения, получать их в свой электронный почтовый ящик, отвечать на письма корреспондентов, рассылать копии писем сразу нескольким адресатам, переправлять полученное письмо по другому адресу, включать в письма различные звуковые и графические файлы.

При использовании электронной почты каждому абоненту присваивается уникальный почтовый адрес, формат которого имеет вид:

<имя пользователя> @ < имя почтового сервера>

Преимущества E-mail в сравнении с обычной почтой:

· Оперативность

· Надёжность

· Дешевизна

Недостатки E-mail в сравнении с обычной почтой:

· Получение невостребованной электронной почты (спам).

· Опасность заражения вирусом.

3 служба — Usenet, News – телеконференции, группы новостей

Служба телеконференций Usenet организует коллективные обсуждения по различным направлениям, называемые телеконференциями.

Новости — это одно из старейших в истории Интернета средств коммуникации между группами людей, интересующимися одним определенным вопросом. Новости Usenet изобретены тремя американскими студентами в 1979 году. Usenet служила в то время для распространения информации и новостей по программированию. Данные сортировались по пятнадцати рубрикам, впоследствии получившим название «группы новостей», «конференции» или «телеконференции».

Служба новостей (USENET) построена по принципу открытой конференции — собрания людей для обсуждения определенных тем. Причем пользователь одновременно может участвовать в бесчисленном количестве электронных конференций, не боясь пропустить чего-либо.

Вся информация, хранимая в USENET, организованна по тематическому признаку, то есть служба новостей является своеобразным тематическим каталогом, содержащим мнения людей на ту или иную тему. Сообщения, именуемые также статьями, объединенные общей темой, помещаются в тематические группы, называемые группами новостей. Группы новостей, в свою очередь, могут содержаться внутри других групп, образовывая тематические иерархии.

Доступ к группам новостей осуществляется через процедуру подписки, которая состоит в указании координат сервера новостей и выбора интересующих пользователя групп новостей.

Сегодня Usenet имеет более десяти тысяч дискуссионных групп (NewsGroups) или телеконференций, каждая из которых посвящена определённой теме и является средством обмена мнениями.

Телеконференции разбиты на несколько групп:

· news— вопросы, касающиеся системы телеконференций;

· comp— компьютеры и программное обеспечение;

· rec — развлечения, хобби и искусства;

· sci— научно-исследовательская деятельность и приложения;

· soc — социальные вопросы;

· talk — дебаты по различным спорным вопросам;

· misc— всё остальное.

§

При дистанционном обучении телеконференции играют ключевую роль, сближая обучение в среде Интернет с традиционным очным обучением. Совершенствование программного обеспечения, каналов связи и телекоммуникационного оборудования привело к тому, что участники процесса дистанционного обучения могут не только обмениваться сообщениями по электронной почте, как это было совсем недавно, но могут видеть и слышать друг друга, общаясь в режиме реального времени. В настоящее время телеконференциями называется большая группа разнообразных служб и сервисов Интернет, предназначенная для коммуникации пользователей. Выделяются следующие виды телеконференций:

· асинхронные телеконференции — конференции, в которых обмен информацией происходит в отсроченном режиме (по электронной почте);

· синхронные телеконференции — конференции в режиме реального времени, предоставляющие возможность обмена как текстовой, так и визуальной и голосовой информацией.

Асинхронные телеконференции являются одной из наиболее старых услуг, предоставляемых пользователям Интернет. Их главным преимуществом является то, что они не требуют присутствия всех участников конференции в одно и то же время, что очень удобно в том случае, если участники конференции находятся в разных часовых поясах или не могут одновременно находиться за компьютером в установленное для конференции время. Также, данные конференции удобны для тех пользователей, кому требуется большее время на обдумывание своих выступлений, кто хочет дополнительно поработать над ответом, проблемой, поднятой в рамках конференции, или если язык общения на конференции не является родным языком участника (как правило, в этих случаях на подготовку ответа или реплики уходит гораздо больше времени).

Наиболее распространенные формы асинхронных телеконференций этоСписки рассылки (discussion lists)

Они дают возможность рассылки электронного сообщения одновременно нескольким (многим) адресатам по заранее составленному адресному списку. Списки рассылки удобны при организации работы сравнительно небольшой группы пользователей (учебной группы, малой группы, двух-трех соавторов создающейся статьи и т.п.). Подобные списки рассылки можно создать как с помощью традиционных офисных программ (например, в MS Оutlook 2000), так и с помощью специальных программ типа Listserve, Majordomo, Listproc. Как правило, подобные списки рассылки ведутся (модерируются) администратором (преподавателем курса, координатором) того сервера, на котором они создаются, что защищает информацию, циркулирующую в них, от несанкционированного доступа.

Синхронные телеконференции все больше завоевывают популярность в сфере дистанционного обучения. Различаются следующие виды синхронных конференций:

· Чаты — интерактивное общение в режиме реального времени с использованием специальных почтовых программ (типа IRC, ICQ и т.п.). Интенсивное общение, представляющее определенные трудности для тех пользователей, кто плохо владеет клавиатурой. Чаты эффективны для небольших групп участников — от двух до пяти человек. При необходимости, если в чате должны участвовать более пяти человек, необходимо заранее четко оговаривать последовательность выступлений, ход дискуссии и правила общения участников друг с другом.

· Аудиоконференции — телеконференции, появившиеся благодаря развитию Интернет-телефонии. Перспективны при организации групповой работы, а также для трансляции лекций и семинаров, проводимых экспертами в конкретной предметной области.

· Видеоконференции — объединяют звук и изображение, являясь наиболее близкой к реальной формой дистанционного общения.

Оцените статью
Реферат Зона
Добавить комментарий