Реферат: Устройства хранения информации 3 —

Реферат: Устройства хранения информации 3 - Реферат

Хранение информации — информатика, программирование — referat-zona.ru

1.6.5 Хранение информации

Хранение и накопление информации вызвано ее многократным использованием, применением постоянной информации, необходимостью комплектации первичных данных до их обработки; осуществляется на машинных носителях в виде информационных массивов, где данные располагаются по установленному в процессе проектирования группировочному признаку.

Хранение информации – это ее запись во вспомогательные запоминающие устройства на различных носителях для последующего использования.

Хранение является одной из основных операций, осуществляемых над информацией, и главным способом обеспечения ее доступности в течение определенного промежутка времени.

Основное содержание процесса хранения и накопления информации состоит в создании, записи, пополнении и поддержании информационных массивов и баз данных в активном состоянии (рис. 1.16).

В результате реализации такого алгоритма документ, независимо от формы представления поступивший в информационную систему, подвергается обработке и после этого отправляется в хранилище (базу данных), где помещается на соответствующую «полку» в зависимости от принятой системы хранения. Результаты обработки передаются в каталог.

Этап хранения информации может быть представлен на следующих уровнях: внешнем, концептуальном (логическом), внутреннем, физическом.

Реферат: Устройства хранения информации 3 -

Рис. 1.16. Алгоритм процесса подготовки информации к хранению

Внешний уровень отражает содержательность информации и представляет способы (виды) представления данных пользователю в ходе их хранения.

Концептуальный уровень определяет порядок организации информационных массивов и способы хранения информации (файлы, массивы, распределенное хранение, сосредоточенное и др.).

Внутренний уровень представляет организацию хранения информационных массивов в системе ее обработки и определяется разработчиком.

Физический уровень хранения означает реализацию хранения информации на конкретных физических носителях.

Способы организации хранения информации связаны с ее поиском – операцией, предполагающей извлечение хранимой информации.

Хранение и поиск информации являются не только операциями над ней, но и предполагают использование методов осуществления этих операций. Информация запоминается так, чтобы ее можно было отыскать для дальнейшего использования. Возможность поиска закладывается во время организации процесса запоминания. Для этого используют методы маркирования запоминаемой информации, обеспечивающие поиск и последующий доступ к ней и применяемые для работы с файлами, графическими базами данных и т. д.

Маркер (mark, marker) – метка на носителе информации, обозначающая начало или конец данных либо их части (блока).

В современных носителях информации используются маркеры:

—     адреса (адресный маркер) – код или физическая метка на дорожке диска, указывающие на начало адреса сектора;

—     группы – маркер, указывающий начало или конец группы данных;

—     дорожки (начала оборота) – отверстия на нижнем диске пакета магнитных дисков, указывающие физическое начало каждой дорожки пакета.

—     конца файла – метка, используемая для указания окончания считывания последней записи файла;

—     ленты (ленточный маркер) – управляющая запись или физическая метка на магнитной ленте, обозначающая признак начала или конца блока данных или файла;

—     сегмента – специальная метка, записываемая на магнитной ленте для отделения одного сегмента набора данных от другого.

Хранение информации в ЭВМ связано с процессом ее арифметической обработки и с принципами организации информационных массивов, поиска, обновления, представления информации и др.

Важным этапом автоматизированного этапа хранения является организация информационных массивов.

Массив (от англ. array) – упорядоченное множество данных.

Информационный массив – система хранения информации, включающая представление данных и связей между ними, т. е. принципы их организации.

С учетом этого рассматриваются следующие структуры организации информационных массивов: линейная, многомерная.

В свою очередь, линейная структура данных делится на строки, одномерные массивы, стеки, очереди, деки и др.

Строка – это представление данных в виде элементов, располагающихся по признаку непосредственного следования, т. е. по мере поступления данных в ЭВМ.

Одномерный массив – это представление данных, отдельные элементы которых имеют индексы, т. е. поставленные им в соответствие целые числа, рассматриваемые как номер элемента массива.

Индекс обеспечивает поиск и идентификацию элементов, а следовательно, и доступ к заданному элементу, что облегчает его поиск по сравнению с поиском в строке.

Идентификация – процесс отождествления объекта с одним из известных объектов.

Стек – структура данных, учитывающая динамику процесса ввода-вывода информации, использующая линейный принцип организации хранения, реализующий процедуру обслуживания «последним пришел – первым ушел» (первым удаляется последний поступивший элемент).

Очередь – структура организации данных, при которой для обработки информации выбирается элемент, поступивший ранее всех других.

Дека – структура организации данных, одновременно сочетающая рассмотренные виды.

Нелинейные структуры хранения данных используют многомерные структуры (массивы) следующих видов: деревья, графы, сети.

Элемент многомерного массива определяется индексом, состоящим из набора чисел. Формой представления прямоугольного массива является матрица, каждое значение которой определяется индексом требуемого элемента массива. Так, в двухмерном массиве элементы обозначаются двумя индексами, а в трехмерном – тремя.

Массивы по своей структуре близки к файлам и отличаются от последних двумя основными признаками:

—    каждый элемент массива может быть явно обозначен, и к нему имеется прямой доступ;

—    число элементов массива определяется при его описании.

Организация хранения данных в многомерном массиве может быть представлена в виде логических структур информационных массивов. В этих массивах структуры данных компонуются в виде записей, располагающихся различным образом. С учетом этого выделяют следующие основные структуры информационных массивов: последовательную, цепную, ветвящуюся, списковую.

В последовательной структуре информационного массива записи располагаются последовательно, нахождение требуемой записи осуществляется путем просмотра всех предшествующих. Включение новой записи в информационный массив требует смещения всех записей, начиная с той, которая добавляется. Обновление информационных массивов при последовательной структуре требует перезаписи всего массива.

В цепной структуре информационные массивы располагаются произвольно. Для логической связи отдельных записей необходима их адресация, т. е. каждая предыдущая запись логически связанного информационного массива должна содержать адрес расположения последующей записи. Если с определенного уровня, значения в записях повторяются в различных сочетаниях, то в целях экономии памяти возможен переход от цепной структуры к ветвящейся.

В ветвящейся структуре информационного массива сначала размещается запись, отображающая признак объекта с небольшим числом значений, далее они повторяются в записях в различных сочетаниях. Это дает возможность перейти от некоторой основной записи к другим в зависимости от запроса, не повторяя основную запись.

Чтобы устранить повторяющиеся записи и соответствующие им поля из памяти, их удаляют из основного массива и объединяют в дополнительный небольшой информационный массив. В нем записи упорядочиваются по какому-либо признаку без повторений, тогда в основном массиве вместо удаленного информационного поля указываются адреса записей, размещенных в дополнительном массиве. Данная структура является удобной при реорганизации информационной базы, поскольку повторяющиеся записи легко могут быть заменены, так как хранятся в дополнительном массиве, основной массив подвергается при этом незначительным изменениям. Однако эта структура требует дополнительного объема памяти.

Списковая структура информационных массивов характеризуется наличием списка, который содержит набор данных, определяющих логический порядок организации информационного массива.

Список включает имя и адрес поля данных. В памяти ЭВМ элементы списка физически разнесены, но связаны друг с другом логически за счет адресных ссылок.

Поле данных в зависимости от характера хранимой информации может быть выражено двоичным разрядом, словом фиксированной либо переменной длины, а также набором отдельных слов.

Формализовано список может быть реализован в виде таблицы, где имена списка и поля данных сопоставлены с адресами, выбранными произвольно по мере наличия свободных мест в запоминающем устройстве. В случае необходимости повторений какой-либо информации рекомендуется многократно обращаться по адресу, который может входить в несколько списков, т. е. применить механизм многократных адресных ссылок.

Списковая структура с механизмом адресных ссылок может быть представлена в виде графа древовидной структуры. В нем каждый элемент списка включает в себя маркерное поле, поле данных и адресное поле. Маркерное поле предупреждает, имеется ли ссылка на другой список или она отсутствует. В зависимости от этого в маркерном поле ставится знак минус или плюс.

Списки так же могут быть показаны ориентированными графами с полями, в которых возможна ссылка вперед и назад. Возникает так называемый симметричный список, и появляется возможность движения в структуре данных в разных направлениях.

Рассмотренные списковые структуры информационных массивов имеют следующие особенности:

—     высокую логическую простоту;

—     относительно большое количество времени доступа, обусловленное адресным обращением к данным, при котором к каждому элементу списка необходимо иметь ссылку;

—     значительное возрастание объема памяти запоминающего устройства по сравнению с последовательной структурой организации информационных массивов, обусловленное адресным обращением к данным.

С учетом рассмотренных структур формирования информационных массивов можно представить ряд способов организации массивов (рис. 1.17) в запоминающих устройствах ЭВТ.

Реферат: Устройства хранения информации 3 -

Рис. 1.17. Способы организации массивов информации в запоминающем устройстве ЭВТ

На физическом уровне любые записи информационного поля представляют в виде двоичных символов. Обращение к памяти большого объема требует большой длины адреса. Если память имеет емкость 2n слов, то для поиска таких слов потребуются n-разрядные адреса. В микропроцессорах восьмиразрядные слова дают возможность обращаться к 256 ячейкам памяти, что оказывается недостаточно для хранения информации в автоматизированных системах. Если непосредственно обращение к любой ячейке невозможно, переходят к страничной организации памяти.

В этом случае выбирают область памяти емкостью 2n слов и называют страницей, обращение к которой осуществляется командой, содержащей n-разрядное адресное поле. В микропроцессорах обычно используют страницы размером 256 слов.

Принципы адресации, объемы памяти, количественные характеристики зависят от функционального назначения запоминающих устройств, разделяющимся по уровням функциональной иерархии на сверхоперативные, оперативные, постоянные, полупостоянные, внешние, буферные.

С хранением информации связаны следующие понятия: носитель информации (память), внутренняя память, внешняя память, хранилище информации.

Носитель информации – это физическая среда, непосредственно хранящая информацию. Основным носителем информации для человека является его собственная биологическая память (мозг), которую можно назвать оперативной (быстрой) памятью или внутренней памятью, поскольку ее носитель находится внутри нас.

Другие носители информации можно назвать внешними (по отношению к человеку), например бумага, которая, непригодна в обычных (не специальных) условиях для длительного хранения информации: на нее оказывают вредное воздействие температурные условия.

Для ЭВТ по материалу изготовления различают бумажные, металлические, пластмассовые, комбинированные и другие носители; по принципу воздействия и возможности изменения структуры выделяют магнитные, полупроводниковые, диэлектрические, перфорационные, оптические и др.; по методу считывания различают контактные, магнитные, электрические, оптические. Хранение информации осуществляется на специальных носителях.

Особое значение при построении информационного обеспечения имеют характеристики доступа к информации, записанной на носителе, которые бывают прямого и последовательного доступа. Пригодность носителя для хранения информации оценивается такими параметрами, как время доступа, емкость памяти и плотность записи. Хранение больших объемов информации оправдано только при условии, если поиск нужной информации можно осуществить достаточно быстро, а сведения получить в доступной форме.

Хранилище информации – это определенным образом организованная информация на внешних носителях, предназначенная для длительного хранения и постоянного использования, например архивы документов, библиотеки, справочники, картотеки. Основной информационной единицей хранилища является определенный физический документ: анкета, книга, дело, досье, отчет и пр. Под организацией хранилища понимается наличие определенной структуры, т. е. упорядоченность, классификация хранимых документов. Она необходима для удобства ведения хранилища: пополнения новыми документами, удаления ненужных, поиска информации и т. д.

Основные свойства хранилища информации: объем хранимой информации, надежность хранения, время доступа (т. е. время поиска нужных сведений), наличие защиты информации.

Информацию, хранимую на устройствах компьютерной памяти, принято называть данными. Для описания хранения данных используют те же понятия: носитель, хранилище данных, организация данных, время доступа, защита данных. Организованные хранилища данных на устройствах внешней памяти компьютера принято называть базами данных и банками данных.

Таким образом, хранение информации представляет собой процесс передачи информации во времени, связанный с обеспечением неизменности состояния материального носителя.

§

1. Телетайпная связь, при которой ввод информации в телетайп может осуществляться вручную с клавиатуры и автоматизированно с перфоленты.

2. Дейтефонная связь использует для передачи информации телефонные каналы связи, а в качестве приемопередающей аппаратуры может использоваться как обычная телетайпная аппаратура совместно с модемами, так и специальная. Примерный состав и назначение аппаратуры абонента дейтефонной связи:

1)   телефонный аппарат – первоначальный вызов абонента;

2)   фотосчитывающее устройство – автоматическое считывание информации с перфоленты при передаче;

3)   перфоратор ленты – регистрация принятой информации на перфоленту;

4)   модулятор-демодулятор (модем) – согласование приемопередающей аппаратуры с телефонным каналом связи;

5)   устройство защиты от ошибок – для обеспечения достоверности передачи информации;

6)   устройство алфавитно-цифровой печати (принтер, телетайп).

Факсимильный способ передачи информации заключается в дистанционном копировании документов. Назначение факсимильной связи – передача на расстояние информации в виде текстов, чертежей, рисунков, схем, фотоснимков и т. п.

1.6.4 Обработка информации

На различных этапах информационного цикла данные преобразовываются из одного вида в другой с помощью различных методов. Общая схема процесса обработки информации выглядит следующим образом (рис. 1.15).

Реферат: Устройства хранения информации 3 -

Рис.1.15. Схема процесса обработки информации

В процессе обработки информации решается некоторая информационная задача, для которой должны быть определены исходная (некоторый набор исходных данных) и итоговая (требуемые результаты) информация. Переход от исходных данных к результату и есть процесс обработки. Тот объект или субъект, который осуществляет обработку, называется исполнителем обработки. Это может быть человек или техническое устройство, в том числе компьютер.

Для успешного выполнения обработки информации исполнителю должен быть известен способ обработки, т. е. последовательность действий, которую нужно выполнить, чтобы достичь нужного результата. Описание такой последовательности действий в информатике принято называть алгоритмом обработки.

Можно выделить два типа обработки информации:

1. Обработка, связанная с получением новой информации, нового содержания знаний. К ней относится решение различных задач путем применения логических рассуждений.

2. Обработка, связанная с изменением формы, но не изменяющая содержания,
например, перевод текста с одного языка на другой.

Обработка данных включает в себя множество разных операций, представляющих собой комплекс совершаемых технологических действий, в результате которых информация преобразуется. Основными операциями являются:

—     формализация (приведение данных, поступающих из разных источников, к единой форме);

—     фильтрация (устранение лишних данных, которые не нужны для принятия решений);

—     сортировка (приведение в порядок данных по заданным признакам с целью удобства использования);

—     архивация
(сохранение данных в удобной и доступной форме);

—     защита (комплекс мер, направленных на предотвращение потерь при воспроизведении и модификации данных);

—     преобразование (преобразование данных из одной формы в другую или из одной структуры в другую или изменение типа носителя).

Обработка информации – это получение одних информационных объектов из других информационных объектов путем выполнения некоторых алгоритмов.

Обработка является одним из основных процессов, выполняемых над информацией, и главным средством увеличения объема и разнообразия информации.

Средства обработки информации – всевозможные устройства и системы, созданные человечеством, и в первую очередь компьютер.

При обработке информации производится структурирование данных. Это определенный порядок, определенная организация в хранилище информации: расположение данных в алфавитном порядке, группировка по некоторым признакам классификации, использование табличного или графового представления – все это примеры структурирования. От способа организации информации зависит алгоритм поиска. Если информация структурирована, то поиск осуществляется быстрее.

Живые организмы и растения обрабатывают информацию с помощью своих органов и систем, компьютеры — путем выполнения некоторых алгоритмов.

Вычислительные алгоритмы должны объединяться в вычислительный граф системы обработки информации в соответствии с требуемой технологической последовательностью решения задач.

По мере развития вычислительной техники совершенствуются и формы ее использования. Существуют разнообразные способы доступа и общения с ЭВМ. Индивидуальный и коллективный доступ к вычислительным ресурсам зависит от степени их концентрации и организационных форм функционирования. Централизованные формы применения вычислительных средств, которые существовали до массового использования ПЭВМ, предполагали их сосредоточение в одном месте и организацию информационно-вычислительных центров индивидуального (ИВЦ) и коллективного пользования (ИВЦКП).

Деятельность ИВЦ и ИВЦКП характеризовалась обработкой больших объемов информации, использованием нескольких средних и больших ЭВМ, квалифицированным персоналом для обслуживания техники и разработки программного обеспечения. Централизованное применение вычислительных и других технических средств позволяло организовать их надежную работу, планомерную загрузку и квалифицированное обслуживание.

Централизованная обработка информации наряду с положительными сторонами имеет и некоторые отрицательные черты, порожденные прежде всего отрывом конечного пользователя от технологического процесса обработки информации.

Децентрализованные формы использования вычислительных ресурсов начали формироваться со второй половины 80-х г ХХ в. Децентрализация предусматривает размещение ПЭВМ в местах возникновения и потребления информации, где создаются автономные пункты ее обработки. К ним относят абонентские пункты и автоматизированные рабочие места.

Автоматизированное рабочее место (АРМ) специалиста включает персональную ЭВМ, работающую автономно или в вычислительной сети, набор программных средств и информационных массивов для решения функциональных задач.

Технология электронной обработки информации – человеко-машинный процесс исполнения взаимосвязанных операций, протекающих в установленной последовательности с целью преобразования исходной (первичной) информации в результатную. Технологические операции разнообразны по сложности, назначению, технике реализации, выполняются на различном оборудовании, многими исполнителями.

Различают два основных типа организации технологических процессов: предметный и пооперационный.

Предметный тип организации технологии предполагает создание параллельно действующих технологических линий, специализирующихся на обработке информации и решении конкретных комплексов задач (учет нагрузки, качества прохождения сигнала и т. п.) и организующих пооперационную обработку данных внутри линии.

Пооперационный (поточный) тип построения технологического процесса предусматривает последовательное преобразование обрабатываемой информации согласно технологии, представленной в виде непрерывной последовательности сменяющих друг друга операций, выполняемых в автоматическом режиме.

Различают следующие режимы взаимодействия пользователя с ЭВМ: пакетный и интерактивный (запросный, диалоговый). Сами ЭВМ могут функционировать в следующих режимах: одно- и многопрограммном, разделения времени, реального времени, телеобработки.

Организация вычислительного процесса при пакетном режиме строилась без доступа пользователя к ЭВМ. Его функции ограничивались подготовкой исходных данных по комплексу информационно-взаимосвязанных задач и передачей их в центр обработки, где формировался пакет, включающий задание для ЭВМ на обработку, программы, исходные и справочные данные. Он вводился в ЭВМ и реализовывался в автоматическом режиме, при этом работа ЭВМ могла проходить в одно- или многопрограммном режиме.

Интерактивный режим предусматривает непосредственное взаимодействие пользователя с информационно-вычислительной системой, может носить характер запроса (как правило регламентированного) или диалога с ЭВМ.

Запросный режим необходим пользователям для взаимодействия с системой через значительное число абонентских терминальных устройств, в том числе удаленных на значительное расстояние от центра обработки. Такая необходимость обусловлена решением оперативных задач справочно-информационного характера.

Диалоговый режим открывает пользователю возможность непосредственно взаимодействовать с вычислительной системой в допустимом для него темпе работы, реализуя повторяющийся цикл выдачи задания, получения и анализа ответа. При этом ЭВМ сама может инициировать диалог, сообщая пользователю последовательность шагов (представление меню) для получения искомого результата.

Обе разновидности интерактивного режима (запросный, диалоговый) основываются на работе ЭВМ в режимах реального времени и телеобработки, которые являются дальнейшим развитием режима разделения времени, поэтому обязательными условиями функционирования системы в этих режимах являются, во-первых, постоянное хранение в запоминающих устройствах ЭВМ необходимой информации и программ и лишь в минимальном объеме поступление исходРеферат: Устройства хранения информации 3 -Реферат: Устройства хранения информации 3 -Реферат: Устройства хранения информации 3 -Реферат: Устройства хранения информации 3 -ной информации от абонентов и, во-вторых, наличие у абонентов соответствующих средств связи с ЭВМ для обращения к ней в любой момент времени.

Рассмотренные технологические процессы и режимы работы пользователей в системе «человек–машина» особенно четко проявляются при интегрированной обработке информации, которая характерна для современного автоматизированного решения задач в многоуровневых информационных системах.

§

1.6.3 Процесс передачи информации

Информационные потоки на объекте делятся на входные, внутренние и выходные. В канале телекоммуникации они могут быть разделены на односторонние и двухсторонние.

Циркуляцией информационных потоков называется факт регулярного их движения между различными объектами или элементами одного и того же объекта.

Важен процесс передачи информации, заключающийся в ее транспортировке от места генерации (источника) к местам хранения, обработки или использования (потребителю).

Информация передается в виде сообщений от некоторого источника информации к ее приемнику посредством канала связи (информационного канала) между ними. Источник посылает передаваемое сообщение, кодируемое в передаваемый сигнал, посылаемый по каналу связи. В результате в приемнике появляется принимаемый сигнал, который декодируется и становится принимаемым сообщением. Схематично процесс передачи информации показан на рисунке 1.12.

Реферат: Устройства хранения информации 3 -

Рис. 1.12. Процесс передачи информации

В таком процессе информация представляется и передается в форме некоторой последовательности сигналов, символов, знаков. Например, при непосредственном разговоре между людьми происходит передача звуковых сигналов – речи, при чтении текста человек воспринимает буквы – графические символы. Передаваемая последовательность называется сообщением. От источника к приемнику сообщение передается через некоторую материальную среду (звук – акустические волны в атмосфере, изображение – световые электромагнитные волны).

Если в процессе передачи используются технические средства связи, то их называют каналами связи (информационными каналами).

Канал связи – совокупность технических средств (передатчик, линия связи, приемник), обеспечивающих передачу сигналов от источника к получателю сигнала.

По физической природе каналы связи делятся:

—     на механические – используются для передачи материальных носителей информации;

—     акустические – передают звуковой сигнал;

—     оптические – передают световой сигнал;

—     электрические – передают электрический сигнал.

Электрические каналы связи могут быть проводные и беспроводные (радиоканалы).

По форме представления передаваемой информации каналы связи делятся на аналоговые и дискретные. По аналоговым каналам передается информация, представленная в виде непрерывного ряда значений какой-либо физической величины; по дискретным – в виде дискретных (цифровых, импульсных) сигналов той или иной физической природы.

К каналам связи относят телефон, радио, телевидение.

Передача информации по каналам связи часто сопровождается воздействием помех, вызывающих искажение и потерю информации.

В существующих информационных системах различных классов в зависимости от видов используемых носителей информации и средств обработки можно выделить несколько систем передачи, в которых информация распространяется посредством передачи устной речи при непосредственном общении; бумажных носителей с помощью фельдъегерско-почтовой связи; машиночитаемых носителей (магнитных карт, перфокарт, перфолент, магнитных дисков и лент) с помощью фельдъегерско-почтовой связи; в виде различных электрических сигналов по каналам телекоммуникаций, в том числе автоматизированным каналам связи.

В системах управления информация передается как путем переноски (перевозки) информационных документов курьером (фельдъегерем), так и использования систем автоматизированной передачи информации по каналам связи.

Ручная и механическая перевозка документов – весьма распространенный способ передачи информации. При минимальных капитальных затратах он полностью обеспечивает достоверность передачи информации, предварительно зафиксированной в документах и проконтролированной непосредственно в пунктах ее регистрации. Однако данный способ передачи имеет существенный недостаток – низкую оперативность (скорость) передачи.

Схема передачи информации посредством фельдъегерско-почтовой связи представлена на рисунке 1.13.

Реферат: Устройства хранения информации 3 -

Рис. 1.13. Общая схема процесса передачи информации по каналам

фельдъегерско-почтовой связи

Для оперативной передачи информации используют системы автоматизированной передачи информации. Американским ученым Клодом Шенноном была предложена схема процесса передачи информации по техническим каналам связи (рис. 1.14).

Источником информации и ее получателем могут быть как человек, так и различные технические устройства (средства связи, ЭВТ и др.).

С помощью кодера устройства источника (КИ) информация, имеющая любую физическую природу (изображение, звук и т. п.), преобразуется в первичный электрический сигнал b(t). Для непрерывной информации, например речевого сообщения, эта операция сводится к преобразованию звукового давления в пропорционально изменяющийся электрический ток микрофона, который в каждый момент отсчета (времени) можно представить конечным числом сигналов, соответствующих отдельным буквам алфавита источника. В телеграфии последовательность элементов сообщения (букв алфавита) большого объема заменяется (кодируется) символами (буквами) другого алфавита меньшего объема.

Реферат: Устройства хранения информации 3 -

Рис. 1.14. Общая схема системы передачи информации по каналам

телекоммуникаций (связи)

Процесс преобразования информации в систему символов, обеспечивает:

—     простоту технических средств распознавания элементарных символов сообщения;

—     снижение избыточности символов, требующихся на букву сообщения;

—     минимальное время передачи или минимальный объем запоминающих устройств хранения информации;

—     простоту выполнения арифметических и логических действий с хранимой информацией.

В дальнейшем с помощью технического устройства последовательность кодовых символов преобразуется в последовательность электрических сигналов. Связь, при которой передача производится в форме непрерывного электрического сигнала, называется аналоговой связью. В настоящее время широко используется цифровая связь, когда передаваемая информация кодируется в двоичную форму («0» и «1» – двоичные цифры), а затем декодируется в текст, изображение, звук. Цифровая связь является дискретной.

Рассмотренное кодирование при отсутствии помех в канале связи дает выигрыш во времени передачи или объеме запоминающего устройства, т. е. повышает эффективность системы. Оно получило название эффективного, или оптимального, кодирования.

В процессе передачи сигнала по каналу связи на него оказывают негативное воздействие различного рода помехи, искажающие передаваемый сигнал и приводящие к потере информации. Такие помехи возникают по техническим причинам: плохое качество линий связи, незащищенность друг от друга различных потоков информации, передаваемой по одним и тем же каналам. В этих случаях применяются технические способы защиты каналов связи от воздействия шумов. Например, использование экранного кабеля вместо «голого» провода; применение разного рода фильтров, отделяющих полезный сигнал от шума и пр.

Клодом Шенноном была разработана специальная теория кодирования, описывающая методы борьбы с шумом. Одна из важных идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части информации при передаче может быть компенсирована.

Однако нельзя делать избыточность слишком большой. Это приведет к задержкам и подорожанию связи. В современных системах цифровой связи часто применяется следующий прием борьбы с потерей информации при передаче. Все сообщение разбивается на порции – блоки. Для каждого блока вычисляется контрольная сумма (сумма двоичных цифр), передаваемая вместе с данным блоком. В месте приема заново вычисляется контрольная сумма принятого блока, и если она не совпадает с первоначальной, то передача данного блока повторяется. Так будет происходить до тех пор, пока исходная и конечная контрольные суммы не совпадут. Такое кодирование называется помехоустойчивым.

Выбор кодирующих и декодирующих устройств зависит от статистических свойств источника сообщений, уровня и характера помех в канале связи.

В передатчике (ПРД) первичный электрический сигнал преобразуется во вторичный u(t), пригодный для передачи по соответствующему каналу (линии) связи. Такое преобразование осуществляется с помощью модулятора.

Преобразование сообщения в сигнал должно быть обратимым. Это позволит по выходному сигналу восстановить входной первичный сигнал, т. е. получить всю информацию, содержащуюся в переданном сообщении. В противном случае часть информации будет потеряна.

Линия связи – среда, используемая для передачи сигналов от передатчика к приемнику.

В системах электросвязи такими линиями являются кабели, волноводы, в системах радиосвязи — пространства, в которых распространяются электромагнитные волны от передатчика к приемнику.

При передаче по линии связи на сигналы могут накладываться помехи Реферат: Устройства хранения информации 3 -, в результате чего сигналы искажаются.

Приемное устройство в составе приемника (ПРМ) и декодирующего устройства информации (ДИ) обрабатывает принятый сигнал z(t) = s(t) n(t) и восстанавливает по нему передаваемое сообщение а’, адекватное сообщению источника информации a.

Система связи – совокупность технических средств передачи сообщений от источника к потребителю, включающая передающие (КИ, ПРД) и приемные (ДИ, ПРМ) устройства и линию связи.

По виду передаваемых сообщений различают следующие системы связи: передачи речи (телефонная), текста (телеграфная), неподвижных изображений (фототелеграфная), изображений (телевизионная), данных, радиовещание, видеотекста, телетекста, конференцсвязи, телеизмерения и телеуправления и др.

По количеству передаваемых сообщений по одной линии связи системы делятся на одноканальные и многоканальные.

Одной из важных характеристик системы передачи информации является скорость передачи информации.

Основными качественными показателями системы передачи информации являются пропускная способность, достоверность, надежность работы.

Пропускная способность системы передачи информации – наибольшее теоретически достижимое количество информации, которое может быть передано по системе за единицу времени. Она обусловливается скоростью преобразования информации в передатчике и приемнике и допустимой скоростью передачи информации по каналу связи, определяемой физическими свойствами канала связи и сигнала.

Достоверность передачи информации – это передача информации без искажения.

Надежность канала связи – полное и правильное выполнение системой всех своих функций.

Скорость передачи информации – это информационный объем сообщения, передаваемого в единицу времени. Единицы измерения скорости информационного потока: бит/с, байт/с и др.

Скорость передачи дискретной информации по каналу связи измеряется в бодах. Бод – это элемент сигнала, передаваемый в единицу времени (всплеск частоты, переворот фазы).

По пропускной способности каналы связи можно классифицировать на виды:

—     низкоскоростные, скорость передачи информации в которых от 50 до 200 Бд; это дискретные (телеграфные) каналы связи как коммутируемые (абонентский телеграф), так и некоммутируемые;

Рефераты:  Основные положения хромосомной теории наследственности

—     среднескоростные, использующие аналоговые (телефонные) линии связи; скорость передачи в них от 300 до 9 600 Бд, а в новых Стандартах Международного совета электросвязи (МСЭ) (ранее Международного консультационного комитета по телеграфии и телефонии – МККТТ) до 33 600 Бд (Стандарт V.34 бис);

—     высокоскоростные (широкополосные), обеспечивающие скорость передачи информации выше 36 000 Бд; по этим каналам связи можно передавать и дискретную, и аналоговую информации.

Физической средой передачи информации в низкоскоростных и среднескоростных каналах связи (КС) обычно являются группы параллельных, либо скрученных проводов, называемых «витая пара» (скручивание проводов уменьшает влияние внешних помех).

В широкополосных каналах связи используются коаксиальные и оптоволоконные кабели. К ним относятся и беспроводные радиоканалы связи. Возможности широкополосных каналов связи огромны, например, по одному радиоканалу для миллиметровых волн можно одновременно организовать несколько тысяч телефонных, несколько тысяч видеотелефонных и около тысячи телевизионных каналов, при этом скорость передачи может составлять несколько миллионов бод. Не меньше возможностей и у волоконно-оптических каналов.

Следует особо отметить, что телефонный канал связи является более узкополосным, нежели телеграфный, но скорость передачи данных по нему выше ввиду обязательного наличия специального устройства согласования – модема.

Модем выполняет следующие функции:

—     при передаче преобразование широкополосных импульсов (цифрового кода) в полосные аналоговые сигналы (амплитудно-, частотно- или фазомодулированные);

—     при приеме фильтрацию принятого сигнала от помех и детектирование, т. е. обратное преобразование узкополосного аналогового сигнала в цифровой код.

Благодаря фильтрации сигнала повышается помехоустойчивость, что, в свою очередь, позволяет увеличивать пропускную способность системы. Модемы, выпускаемые промышленностью, различаются:

—     конструкцией (автономные и встраиваемые в аппаратуру);

—     интерфейсом с КС (контактные и бесконтактные (аудио));

—     назначением для разных каналов связи и систем (например, для систем передачи данных – модемы, для систем передачи факсов – факс-модемы);

—     скоростью передачи. Существует стандарт скоростей передачи данных, соответствующий стандарту протоколов (алгоритмов управления) МСЭ для телефонных КС; он включает скорости (в бодах): 300, 600, 1 200, 2 400, 4 800,12 000, 14 400, 16 800,19 200, 28 800, 33 600.

Ранее модемы выпускались каждый на определенную скорость работы. Современные модемы более универсальны: некоторые из них (МТ 1932, МТ 2834 и др.) могут работать как с коммутируемыми, так и с некоммутируемыми КС, поддерживают почти всю шкалу названных скоростей, имеют режимы модема и факс-модема.

Классификация систем передачи информации:

1.   Передача недокументированной информации. Телефонная связь – самый распространенный вид оперативной административно-управленческой связи. Ее абонентами являются как физические лица, так и организации. Телефонную связь можно разделить на общегосударственную и внутриучрежденческую. Виды телефонной связи: радиотелефонная, видеотелефонная, пейджинговая.

2.   Передача документированной информации. Телеграфная связь предназначена для передачи на расстояние по электрическим проводным каналам связи алфавитно-цифровой информации для автоматизированного приема-передачи коротких текстовых документированных сообщений:

§

1.6.2 Процесс сбора информации

Восприятие информации – процесс преобразования сведений, поступающих в техническую систему или живой организм из внешнего мира, в форму, пригодную для дальнейшего использования. Благодаря восприятию информации обеспечивается связь системы с внешней средой, в качестве которой могут выступать человек, наблюдаемый объект, явление или процесс и т. д.

Для развитых систем восприятия можно выделить несколько этапов переработки поступающей информации: предварительная обработка для приведения входных данных к стандартному для такой системы виду, выделение в поступающей информации семантически и прагматически значимых информационных единиц, распознавание объектов и ситуаций, коррекция внутренней модели мира. Важнейшей проблемой восприятия информации является интеграция информации, поступающей из различных источников и от анализаторов разного типа в пределах одной ситуации.

Сбор информации – это процесс ее получения из внешнего мира и приведения к виду, стандартному для данной информационной системы, с целью обеспечения достаточной полноты для принятия решения.

Обмен информацией между воспринимающей информацию системой и окружающей средой осуществляется посредством сигналов.

Сигнал можно определить как средство перенесения информации в пространстве и времени. В качестве носителя сигнала могут выступать звук, свет, электрический ток, магнитное поле и т. д.

Совокупность технических средств ввода информации в ЭВМ, программ, управляющих всем комплексом технических средств, обеспечивающих ввод информации с отдельных устройств ввода (драйверов устройств), – вот что представляет собой современная развитая система сбора информации.

В процессе сбора происходит комплектование системы информационного обеспечения массивами первичных и вторичных документированных источников информации.

К первичным документированным источникам информации относятся опубликованные, неопубликованные и непубликуемые документы, содержащие исходную информацию; к вторичным – документы, полученные в результате аналитико-синтетической переработки одного или нескольких первичных источников, например: информационные издания (библиографические, реферативные, обзорные).

Применительно к информационным системам, созданным с применением ЭВТ, используется понятие «сбор данных».

Сбор данных – процесс идентификации и получения данных от различных источников, группирования их и представления в форме, необходимой для ввода в ЭВМ.

Сбор информации связывает систему информационного обеспечения с внешней средой. Эффективность процесса сбора информации (информационного массива) оценивается показателями полноты, точности, оперативности, стоимости, трудоемкости.

Полнота – количественная мера содержания в массиве пертинентных документов (информации), существующих на данный момент времени с точки зрения всех пользователей системы.

Пертинентность – соответствие содержания документа (информации) информационным потребностям пользователей.

Точность – количественная мера содержания в информационном массиве (системе) только пертинентных документов (информации). Этот показатель характеризует внутреннее состояние процесса сбора, его способность удовлетворять информационные запросы независимо от времени на поиски информации.

Оперативность – способность процесса сбора выполнить задачу в минимально возможное время.

Стоимость – способность процесса сбора минимизировать затраты ресурса на единицу массива информации.

Трудоемкость – способность процесса сбора минимизировать трудозатраты на единицу массива информации.

В рамках процесса сбора осуществляется структуризация информации, информационных потребностей объекта (пользователя) и выбор источника информации.

Структуризация информации представляет системную классификацию информации по показателям удобства ее использования человеком в процессе решения практических задач обработки и хранения с использованием современных средств и методов (гл. 1.4.1).

Решение задачи структуризации информационных потребностей пользователя связано с формированием информационного кадастра, представляющего организованную совокупность всех данных, необходимых и достаточных для информационного обеспечения деятельности современного объекта.

Выбор источника информации должен осуществляться исходя из следующих требований: полноты информационного кадастра достоверности, актуальности, релевантности информативности, толерантности, функциональной направленности, легальности поставляемой, регулярности поступающей информации, минимизации затрат ресурса на поддержание информационного кадастра.

Задача оптимального выбора источников информации заключается в выборе из всего имеющегося потенциального множества такой совокупности, которая при минимальных расходах средств и трудозатратах обеспечила бы удовлетворительное регулярное поступление необходимой информации, отвечающей перечисленным выше требованиям.

§

1.5.7 Модуляция сигналов

Вследствие сильного затухания электромагнитной волны для передачи сигнала на расстояния приходится вызывать достаточно мощные электромагнитные колебания среды. Следовательно, перед передачей сигнал надо в достаточной мере усилить, произвести некоторые преобразования, чтобы получатель смог выделить (детектировать) полезный сигнал из общего фона электромагнитных колебаний среды.

Модуляция сигнала – процесс изменения одного сигнала в соответствии с формой другого сигнала. Модуляция осуществляется для передачи данных с помощью электромагнитного излучения. Обычно модификации подвергается синусоидальный сигнал (несущая). Различают амплитудную, частотную, фазовую, импульсно-кодовую, спектральную, поляризационную модуляции.

В радиосвязи чаще всего используют амплитудную (АМ, AM –amplitude modulation), частотную (ЧМ, FM – frequency modulation) и фазовую (ФМ, РМ – phase modulation) модуляции. При передаче сообщения, представленного дискретными символами, вместо термина «модуляция» применяется термин «манипуляция», а само колебание называется манипулированным.

Несущая – синусоидальный сигнал определенной частоты с низким коэффициентом затухания для данной среды передачи, модулируемый полезным сигналом.

Амплитудная модуляция – это модуляция, при которой незатухающие колебания изменяются по амплитуде в соответствии с модулирующими колебаниями более низкой частоты (рис. 1.7).

В радиовещании в длинно- и средневолновом диапазонах радиоволн широко используется амплитудная модуляция сигнала. На вход модулятора подаются опорный и передаваемый (модулирующий) сигналы, а на выходе получают смодулированный, положительная огибающая которого и есть исходный сигнал. Для корректного преобразования необходимо, чтобы несущая частота была в два раза выше, чем верхняя граница полосы модулирующего сигнала. Спектр амплитудно-модулированного колебания содержит составляющую несущей частоты fн и две боковые полосы (верхнюю и нижнюю), имеющие спектр, подобный спектру модулирующего колебания.

Таким образом, спектр модулированного сигнала симметричен, и для рационального использования передающего оборудования одну из боковых полос спектра передаваемого сигнала подавляют. При использовании разных частот опорного сигнала можно одновременно передавать несколько независимых сигналов, только необходимо соблюсти условие непересечения полос смодулированных сигналов. Данный способ модуляции довольно прост в реализации, но менее устойчив к помехам, чем другие методы, рассматриваемые ниже. Помехонеустойчивость объясняется относительно узкой полосой модулированного сигнала (всего в два раза шире, чем у исходного). Тем не менее это обстоятельство позволяет использовать амплитудную модуляцию в низко- и среднечастотных диапазонах электромагнитного спектра. Амплитудная манипуляция используется в низкоскоростных информационных системах (скорость менее 600 бит/с).

Реферат: Устройства хранения информации 3 -

Рис. 1.7. Амплитудная модуляция

Частотная модуляция – это модуляция, при которой несущая частота сигнала изменяется в соответствии с модулирующим колебанием.

При частотной модуляции модулирующий сигнал модулирует не мощность опорного сигнала, а его частоту (рис. 1.8), т. е. если уровень сигнала увеличивается, то частота растет и наоборот. Из-за этого спектр частотно-модулированного сигнала значительно шире, и соответственно, хорошая помехоустойчивость, но необходимо использовать высокочастотные диапазоны вещания. Частотная манипуляция находит применение в модемах, обеспечивающих скорость передачи 1200–1800 бит/с.

Реферат: Устройства хранения информации 3 -

Рис. 1.8. Частотная модуляция

Модем – внешнее или внутреннее устройство, подключаемое к компьютеру для передачи и приема сигналов по телекоммуникационным (телефонным) линиям. Для трансляции сигнала по аналоговой линии связи модем преобразует цифровой сигнал, полученный от компьютера, в аналоговую форму. При приеме сигнала модем выполняет обратное преобразование.

Возможны два вида частотной манипуляции: с разрывом фазы и без разрыва. В настоящее время на высоких скоростях применяется только последний вид.

С увеличением числа используемых частот происходит переход к m-ичной частотной манипуляции, применение которой позволит повысить скорость передачи символов (бит/с). Фазовая модуляция (ФМ) – это модуляция, в которой при изменении от «0» к «1» и от «1» к «0» фаза синусоидальной несущей изменяется на 180º. При фазовой модуляции модулирующий сигнал модулирует фазу опорного сигнала. При модулировании цифровым (дискретным) сигналом получается сигнал с очень широким спектром, так как фаза резко поворачивается (двоичный сигнал – на 180º) (рис.1.9), поэтому ее с успехом применяют для обеспечения помехозащищенной цифровой связи в высокоскоростных модемах.

Реферат: Устройства хранения информации 3 -

Рис. 1.9. Фазовая модуляция Возможны два вида фазовой манипуляции: абсолютная и относительная. Абсолютная фазовая манипуляция – это такой вид манипуляции несущей, при котором ее фаза изменяется на π (180°) всякий раз при изменении знака (полярности) посылки первичного сигнала. Относительная
фазовая манипуляция – это такой вид манипуляции несущей, при котором ее фаза изменяется на π (180°) всякий раз при изменении знака (полярности) посылки первичного сигнала «на минус» (0). Название «относительная» говорит о том, что фаза данной n-й посылки формируется относительно фазы предыдущей (n — 1)-й посылки.
Импульсно-кодовая модуляция (PCM – Pulse Code Modu-lation) – это модуляция, в которой аналоговый сигнал кодируется сериями импульсов, она используется в устройствах кодирования-декодиро-вания, а также в телефонных сетях.

Для передачи аналогового сигнала по цифровым линиям связи производят дискретизацию с определенной частотой, определенной из расчета не менее чем в 2 раза выше верхней границы полосы аналогового сигнала (по теореме Котельникова). В каждый момент квантования вычисляется и кодируется в цифровое значение уровень аналогового сигнала. Качество модуляции напрямую зависит от частоты дискретизации и разрядности кодирования каждого уровня. В цифровой телефонии используют 8-битное кодирование (256 уровней, 11 кГц), в CD-Audio используют 16-битное кодирование (65 536 уровней сигнала, 44,1 кГц), а в DVD-Audio, например, 24бит/192 кГц.

В телекоммуникационных сетях несколько ПЭВМ объединяются в модулированную сеть. Модулированная сеть – это локальная вычислительная сеть, в которой устройства соединены коаксиальным или оптоволоконным кабелем; передача данных осуществляется с помощью модуляции аналоговых сигналов; вся полоса пропускания среды передачи разбивается на несколько интервалов (полос), каждый из которых служит каналом связи. Модулированные сети могут одновременно передавать телепрограммы, речь, двоичные данные и т. п.

1.6 Структура и закономерности протекания

информационных процессов

1.6.1 Информационная система

19)      В информатике понятие «система» чаще используют относительно набора технических средств и программ. Системой называют также аппаратную часть компьютера. Дополнение понятия «система» словом «информационная» отображает цель ее создания и функционирования.

Информационная система – взаимосвязанная совокупность средств, методов и персонала, используемая для сохранения, обработки и выдачи информации с целью решения конкретной задачи.

Современное понимание информационной системы предусматривает использование компьютера как основного технического средства обработки информации. Компьютеры, оснащенные специализированными программными средствами, являются технической базой и инструментом информационной системы.

В работе информационной системы можно выделить следующие этапы:

1.   Зарождение данных – формирование первичных сообщений, фиксирующих результаты определенных операций, свойства объектов и субъектов управления, параметры процессов, содержание нормативных и юридических актов и т. п.

2.   Накопление и систематизация данных – размещение их в порядке, обеспечивающем быстрый поиск и отбор нужных сведений, методическое обновление данных, защиту от искажений, потерь, деформирования целостности и др.

3.   Обработка данных – процессы, в следствии которых, на основе прежде накопленных данных формируются новые виды данных: обобщающие, аналитические, рекомендательные, прогнозные. Производные данные тоже можно обрабатывать, получая более обобщенные сведения.

4.   Отображение данных – представление их в форме, пригодной для восприятия человеком, прежде всего, вывод на печать, т. е. создание документов на так называемых твердых (бумажных) носителях. Широко используют построение графических иллюстративных материалов (графиков, диаграмм) и формирование звуковых сигналов.

Сообщения, формируемые на первом этапе, могут быть обычным бумажным документом, сообщением в «машинном виде» или тем и другим одновременно. В современных информационных системах сообщения массового характера большей частью имеют «машинный вид». Аппаратура, используемая при этом, имеет название «средства регистрации первичной информации».

Потребности второго и третьего этапов удовлетворяются в современных информационных системах в основном средствами вычислительной техники. Средства, которые обеспечивают доступность информации для человека, т. е. средства отображения данных, являются компонентами вычислительной техники.

Подавляющее большинство информационных систем работает в режиме диалога с пользователем. Типичные программные компоненты информационных систем включают диалоговую подсистему ввода-вывода, подсистему, реализующую логику диалога, подсистему прикладной логики обработки данных, подсистему логики управления данными. Для сетевых информационных систем важным элементом является коммуникационный сервис, обеспечивающий взаимодействие узлов сети при общем решении задачи. Значительная часть функциональных возможностей информационных систем закладывается в системном программном обеспечении: операционных системах, системных библиотеках и конструкциях инструментальных средств разработки. Кроме программной составляющей информационных систем важную роль играет информационная составляющая, которая задает структуру, атрибутику и типы данных, а также тесно связана с логикой управления данными.

В информационной системе осуществляются информационные процессы, определяющие полный цикл обращения информации (регистрация, формирование, обработка, передача, представление, поиск, выдача информации по запросам пользователей, хранение, уничтожение).

Все факторы, воздействующие на информационные системы и информационные процессы, в течение всего жизненного цикла от проектирования до использования входят в так называемую информационную среду. Информационная среда – это весь набор условий для технологической переработки и эффективного использования знаний в виде информационного ресурса. К ней относятся аппаратные средства, программное обеспечение, телекоммуникации, уровень подготовки кадров (специалистов и пользователей), формы стимулирования, контроля, методы и формы управления, документопотоки, процедуры, регламенты, юридические нормы и т. д., причем в информационную среду входит не только управляющая подсистема, но и объект. Исходя из понятия информационной среды удобно дать понятие информационного процесса.

С информацией можно производить следующие операции:

создавать

передавать

воспринимать

иcпользовать

запоминать

принимать;

копировать

формализовать

распространять

преобразовывать

комбинировать

обрабатывать

делить на части;

упрощать

собирать

хранить

искать

измерять

разрушать

контролировать;

и др.

Все эти процессы, связанные с определенными операциями над информацией, называются информационными процессами.

20)      Информационный процесс (ИП) – совокупность последовательных действий, функциональных и информационных связей, обеспечивающих обмен документами и информацией в системе социальной коммуникации с целью доведения их до потребителей.

К процессам социальной коммуникации относятся:

—     непосредственное общение между учеными и специалистами;

—     общение между учреждениями и организациями посредством переписки, рецензирования, консультирования и др.;

—     издательские процессы при подготовке рукописей к изданию;

—     распространение и пропаганда публикаций, публичные выступления;

—     научно-информационная и библиотечно-библиографическая деятельность;

—     управленческая деятельность специалистов, заключающаяся в подготовке управленческих воздействий по оптимизации функционирования систем;

—     средства массовой информации.

Рассматриваемая система социальной коммуникации представляет собой множество взаимосвязанных компонент (рис. 1.10).

Реферат: Устройства хранения информации 3 -

Рис.1.10. Система социальной коммуникации

21)      Документально-информационный поток включает в себя совокупность документов и информации, отображающих систему и уровень знаний, закрепленных в документальных источниках.

Эффективность информационного процесса, определяемого характеристиками документально-информационного потока, информационного массива или базы данных, лингвистических и технических средств, сферы потребителей, оценивается такими общими показателями функционирования, как полнота, точность, стоимость, трудоемкость процесса.

В существующих системах информационного обеспечения управления все этапы информационных процессов взаимосвязаны и выполняются в едином технологическом цикле. Их основная цель – обеспечение наибольшей устойчивости, непрерывности, оперативности, точности управления при минимальных затратах ресурсов на единицу обрабатываемой информации.

Основные существенные свойства, присущие ИП:

—     адекватность – способность преобразовывать информацию состояния в командную, на основе которой объект управления (ОУ) переходит в состояние, соответствующее сложившейся ситуации;

—     оптимальность – способность управления осуществлять «продвижение» ОУ в направлении достижения цели по траектории, лучшей относительно других в смысле принятого критерия;

—     оперативность – способность преобразовывать информацию в соответствии с установленными ограничениями на время преобразования;

—     скрытность – способность сохранять в тайне факт, время и место преобразования информации, ее содержание и принадлежность УО.

Для удобства управления информационными процессами организуются информационные потоки. В современных системах для этих целей создаются автоматизированные информационные системы (АИС) (рис. 1.11), представляющие системы сбора, хранения, обработки и передачи информации, необходимой для удовлетворения потребностей управления.

Элементарная информация – информация о событиях, ситуациях, известная до момента их свершения.

Основная задача таких систем – обеспечение субъекта управления систематизированной и должным образом обработанной информацией.

Для эффективного функционирования системы на всех этапах целесообразно проведение синтаксического, семантического и прагматического анализа циркулирующих информационных по-токов.

Реферат: Устройства хранения информации 3 -

Рис. 1.11. Автоматизированная информационная система

Синтаксический анализ устанавливает важнейшие параметры информационных потоков, включая необходимые количественные характеристики, для выбора комплекса технических средств сбора, регистрации, передачи, обработки, накопления и хранения
информации.

Семантический анализ позволяет изучить информацию с точки зрения смыслового содержания ее отдельных элементов, находить способы языкового соответствия (язык человека, язык ЭВМ) при однозначном распознавании вводимых в систему сообщений.

Прагматический анализ проводится с целью определения полезности информации, используемой для управления, выявления практической значимости сообщений, применяемых для выработки управляющих воздействий.

§

1.5.5.2 Потенциальный код с инверсией при единице

Существует код, похожий на AMI, но только с двумя уровнями сигнала. При передаче нуля он передает потенциал, установленный в предыдущем такте, а при передаче единицы потенциал инвертируется на противоположный. Это называется потенциальным кодом с инверсией при единице. Для улучшения потенциальных кодов используют два метода. Первый метод основан на добавлении в исходный код избыточных бит, содержащих логические единицы; второй – на предварительном «перемешивании» исходной информации таким образом, чтобы установить примерно одинаковую вероятность появления единиц и нулей на линии. Устройство, или блоки, выполняющие «перемешивание», называются скремблерами (scramble – свалка, беспорядочная сборка).

1.5.5.3 Биполярный импульсный код

Кроме потенциальных в сетях используются и импульсные коды когда, данные представлены полным импульсом или его частью – фронтом. Наиболее простым случаем такого подхода является биполярный импульсный код, в котором единица представлена импульсом одной полярности, а ноль – другой. Он обладает отличными самосинхронизирующими свойствами, но постоянная составляющая может присутствовать. Кроме того, спектр у него шире, чем у потенциальных кодов. Из-за слишком широкого спектра биполярный импульсный код используется редко.

1.5.5 Манчестерский код

В локальных сетях до недавнего времени самым распространенным методом кодирования был так называемый манчестерский код. Он применяется в технологиях Ethernet и Token Ring. Здесь для кодирования единиц и нулей используется перепад потенциала, т. е. фронт импульса. Информация кодируется перепадами потенциала, происходящими в середине каждого такта.

Логическое кодирование используется для улучшения потенциальных кодов типа AMI и должно заменять длинные последовательности бит, приводящие к постоянному потенциалу, вкраплениями единиц. Для логического кодирования характерны два метода: избыточные коды и скремблирование.

Избыточные коды основаны на разбиении исходной последовательности бит на порции, часто называемые символами. Затем каждый исходный символ заменяется на новый, который имеет большее количество бит, чем исходный.

Скремблирование – это перемешивание данных скремблером перед передачей их в линию с помощью потенциального кода. Методы скремблирования заключаются в побитном вычислении результирующего кода на основании бит исходного кода и полученных в предыдущих тактах бит результирующего кода.

1.5.6 Обработка аналоговой и цифровой информации

Формы представления информации в современном мире весьма многообразны. Ее можно получить самыми разными способами: извлечь, наблюдая за окружающим миром, событиями в жизни общества; присутствуя в театре, кино; посещая выставки; при чтении книг, журналов; изучении различных документов, чертежей и т. п.

Информация, получаемая посредством визуального наблюдения, чтения, является зрительной. Ее можно не только получить, но и передать с помощью мимики и жестов, а также книг, газет, картин, чертежей и других различных изображений.

В общении людей присутствует звуковая информация. К ней относятся: устная речь, музыкальные звуки и всевозможные восклицания.

Особое внимание следует уделить письменности – знаковому (буквенному) представлению устной речи, в котором звукам соответствуют буквы.

С одной стороны, чтение книг, журналов и других источников, содержащих информацию в письменном виде, относится к зрительной информации; с другой стороны, письменность – это обозначение устной речи, которая относится к звуковой информации. Таким образом, одну и ту же информацию можно прочитать, т. е. увидеть и услышать.

Следует отметить, что устная передача информации намного богаче письменной. В разговоре всегда присутствуют различные интонации, выражающие эмоциональное состояние говорящего. Это придает особую выразительность и несет в себе дополнительную информацию. То же самое можно сказать и о музыкальных произведениях. Аналогично письменности ноты являются знаковым представлением музыкальных звуков. Но записанное в нотах музыкальное произведение не сравнимо с тем же произведением, исполненным музыкантом.

Обмен информацией происходит не только среди людей. Работа машин также невозможна без процессов обработки информации.

В существующих на сегодняшний день разнообразных технических устройствах и системах прием, обработка и передача информации осуществляются с помощью сигналов. Сигналы отражают физические характеристики изучаемых объектов и процессов. Кроме этого, информация в виде сигнала может различным образом перерабатываться, сохраняться, уничтожаться и т. п.

На сегодняшний день различают несколько видов сигналов: звуковые, которые можно услышать при работе милицейской сирены; световые, передающие информацию от пульта дистанционного управления к телевизору. Но наибольшее распространение в современных технических устройствах получили электрические сигналы. Это связано с тем, что для них в настоящее время созданы наилучшие технические средства обработки, хранения и передачи.

При передаче информации посредством электрического сигнала значение информации, заключенной в этом сигнале, выражается в параметрах электрического тока: силе тока и напряжении. При этом информация, переносимая таким сигналом, может быть самой разнообразной.

Существующие в технических устройствах сигналы делятся на непрерывные (аналоговые) и дискретные.

Непрерывность сигнала означает возможность его изменения на любую малую величину в любой заданный малый промежуток времени (рис. 1.3).

Непрерывный сигнал. Образование аналогового сигнала происходит, например, при получении первичной информации с датчиков,

Реферат: Устройства хранения информации 3 -

Рис. 1.3. Непрерывный сигнал

связанных с изучаемым объектом или внешней средой. Полученный аналоговый сигнал, требует дальнейшей обработки. Это может быть передача, преобразование или сохранение. Продемонстрировать аналоговую обработку сигнала можно, рассматривая процесс преобразования сигнала, идущего от микрофона к динамику. Чтобы динамик мог воспроизвести звуковой сигнал, поступивший на вход микрофона, необходимо, чтобы произошел процесс обработки поступившего сигнала. Микрофон преобразует звуковой сигнал в слабый электрический, выходной характеристикой которого является напряжение. Микрофон и динамик применяются в случае, когда стоит проблема усиления звукового сигнала. Для этого производится обработка – целенаправленное усиление аналогового электрического сигнала до требуемой величины. Получив таким образом необходимый сигнал, динамик его преобразовывает в звуковой, но уже более сильный, чем поступивший на вход микрофона.

Примером аналоговой передачи сигнала является передача речевой информации по телефонным проводам.

Аналоговое сохранение информации является также довольно распространенным явлением, например, запись звукового сигнала на магнитофонную ленту.

До 70-х гг. ХХ в. технические устройства работали только с аналоговыми сигналами, каковыми являлись и способы их обработки. Это означало, что обработка сигнала проводилась на непрерывном интервале времени (в каждый малый промежуток времени). В результате получался также аналоговый сигнал (рис. 1.4).

Реферат: Устройства хранения информации 3 -

Рис. 1.4. Аналоговое преобразование сигнала

С появлением в 70-х гг. ХХ в. микропроцессора (основного элемента ЭВМ), а также микросхем с высокой степенью интеграции стали получать распространение дискретные и цифровые сигналы, а вместе с ними и соответствующие способы их обработки.

Дискретность сигнала означает возможность его измерения только на конечном отрезке, в строго определенные моменты времени. Следовательно, сам сигнал представляет собой уже не непрерывную функцию, а последовательность дискретных значений. На рисунке 1. 5 показаны дискретные значения функции, полученные в дискретные моменты времени, имеющие лишь только приближенные числовые значения. В зависимости от решаемой задачи эти значения могут быть зафиксированы только в данных временных точках, но могут сохранять свое значение в промежутке от данной до следующей точки измерения.

Реферат: Устройства хранения информации 3 -

Рис. 1.5. Дискретный сигнал

В случае когда наличие приближенных значений не удовлетворяет поставленной задаче, производят округление имеющихся значений с заданной степенью точности. Вместо приближенных значений получаются определенные конечные числовые значения (рис. 1.6). Дискретный сигнал, значения которого выражены определенными конечными числами, называется цифровым.

Аналогично аналоговым устройствам обработки аналоговых сигналов существуют также специальные технические устройства для обработки, хранения, передачи цифровых сигналов. Бурное развитие вычислительной техники, средств телекоммуникации непосредственно связано с обработкой цифровых сигналов, поскольку цифровая cвязь имеет множество преимуществ по сравнению с аналоговой.

Реферат: Устройства хранения информации 3 -

Рис. 1.6. Цифровой сигнал

Цифровой способ хранения информации нашел широкое применение при записи различного рода информации на аудио- и видео-компакт-дисках (CD-ROM).

Цифровая передача данных используется при обмене информацией между компьютерами с помощью модема или при работе с факсимильными средствами связи.

Довольно сложной оказывается цифровая обработка сигнала, например, цифровыми фильтрами, основанными на алгоритмах преобразования Фурье.

Несмотря на то что цифровая обработка информации приобретает в настоящее время все большее распространение, отказаться от аналоговой невозможно: еще остается достаточно много систем и устройств, в которых информация может передаваться только в виде аналогового сигнала. В связи с этим решаются различные вопросы, ищутся способы преобразования аналогового сигнала в цифровой и наоборот.

Очевидно, при преобразовании исходного аналогового сигнала в цифровой появляется определенная погрешность, что является недостатком. Но, увеличивая число дискретов по оси времени и функции сигнала, можно достичь уменьшения погрешности. Использование современных высокоскоростных технических средств обработки и хранения цифровых сигналов позволяет значительно упростить и удешевить процесс преобразования аналогового сигнала в цифровой, а также устранить недостатки, присущие аналоговой передаче сигнала (например влияние шумов) и получить ряд важных преимуществ.

В результате даже такие области телекоммуникации, как телефонная связь и радиовещание, где традиционным являлся аналоговый сигнал, переходят на цифровую форму обработки и передачи сигналов. Этот процесс получил наибольшее развитие с появлением глобальных компьютерных сетей. Распространенным средством осуществления связи между компьютерами является телефонная сеть. Исходное сообщение, поступающее в телефонную линию, преобразуется в аналоговый сигнал. После этого специальные технические средства производят последующее преобразование этого аналогового сигнала в цифровой, и уже в цифровом виде он обрабатывается, хранится, передается. Только достигнув получателя, цифровой сигнал преобразуется обратно в аналоговый и воспринимается абонентом в привычном ему виде.

Таким образом, существующие виды информации: зрительная и звуковая, с помощью которых общаются люди, а также информация в виде сигналов, непосредственно связаны между собой. Преобразования информации из одного вида в другой показывают, насколько важен и непрерывен процесс обмена информацией. Применение технических устройств делает этот процесс неотъемлемой частью жизни человеческого общества.

Рефераты:  Курсовая работа: Принцип разделения властей -

§

1.5 Кодирование звука

Если преобразовать звук в электрический сигнал, например с помощью микрофона, можно увидеть плавно изменяющееся с течением времени напряжение. Для компьютерной обработки такой аналоговый сигнал нужно каким-то образом преобразовать в последовательность двоичных чисел. Если измерять напряжение через равные промежутки времени и записывать полученные значения в память компьютера, то этот процесс называется дискретизацией (оцифровкой), а устройство, выполняющее его, – аналого-цифровым преобразователем (АЦП).

Чтобы воспроизвести закодированный таким образом звук, нужно выполнить обратное преобразование, для чего служит цифро-аналоговый преобразователь (ЦАП), а затем сгладить получившийся ступенчатый сигнал.

Чем выше частота дискретизации (количество отсчетов за секунду) и больше разрядов отводится для каждого отсчета, тем точнее будет представлен звук. Размер звукового файла увеличивается, поэтому в зависимости от характера звука, требований, предъявляемых к его качеству и объему занимаемой памяти, выбирают некоторые компромиссные значения. Например, при записи на компакт-диски используются 16-битные отсчеты при частоте дискретизации 44 032 Гц. При работе только с речевыми сигналами достаточно 8-битных отсчетов при частоте 8 кГц.

Описанный способ кодирования звуковой информации универсален, он позволяет представить любой звук, преобразовывать его самыми разными способами. Бывают случаи, когда выгодней действовать по-иному. Человек издавна использует довольно компактный способ представления музыки – нотную запись. Чтобы перевести символьную информацию в понятную компьютеру форму, достаточно иметь таблицу соответствий символов этого языка их двоичным кодам.

В 1983 г. ведущие производители компьютеров и музыкальных синтезаторов разработали стандарт, определивший такую систему кодов, – MIDI.

Конечно, такая система кодирования позволяет записать далеко не всякий звук, она годится только для инструментальной музыки. Но есть у нее и неоспоримые преимущества: чрезвычайно компактная запись, естественность для музыканта (практически любой MIDI–редактор позволяет работать с музыкой в виде обычных нот), легкость замены инструментов, изменения темпа и тональности мелодии. Коме того, качество звучания зависит от возможностей синтезатора или звуковой платы компьютера, с помощью которых производится запись.

Заметим, что существуют и другие компьютерные форматы записи музыки, основанные на подобном же принципе.

1.5.5 Цифровое кодирование

При цифровом кодировании дискретной информации применяют потенциальные и импульсные коды.

В потенциальных кодах для представления логических единиц и нулей используется только значение потенциала, а его перепады, формирующие законченные импульсы, во внимание не принимаются. Импульсные коды позволяют представить двоичные данные либо импульсами определенной полярности, либо частью импульса – перепадом потенциала определенного направления.

При использовании прямоугольных импульсов для передачи дискретной информации необходимо выбрать такой способ кодирования, который одновременно достигал бы нескольких целей:

—     имел при одной и той же битовой скорости наименьшую ширину спектра результирующего сигнала;

—     обеспечивал синхронизацию между передатчиком и приемником;

—     обладал способностью распознавать ошибки;

—     обладал низкой стоимостью реализации.

Более узкий спектр сигналов позволяет на одной и той же линии добиваться более высокой скорости передачи данных. Кроме того, часто к спектру сигнала предъявляется требование отсутствия постоянной составляющей, т. е. наличия постоянного тока между передатчиком и приемником.

Синхронизация передатчика и приемника нужна для того, чтобы приемник точно знал, в какой момент времени необходимо считывать новую информацию с линии связи, поэтому в сетях применяются самосинхронизирующиеся коды, сигналы которых несут для передатчика указание о том, в какой момент времени нужно осуществлять распознавание очередного бита или нескольких бит, если код ориентирован более чем на два состояния сигнала. Любой резкий перепад сигнала, так называемый фронт, может служить хорошим указанием для синхронизации приемника с передатчиком.

Требования, предъявляемые к методам кодирования, являются взаимно противоречивыми, поэтому каждый из рассматриваемых ниже популярных методов цифрового кодирования обладает своими преимуществами и своими недостатками по сравнению с другими.

1.5.5.1 Метод биполярного кодирования с альтернативной

инверсией (AMI)

В этом методе используются три уровня потенциала: отрицательный, нулевой и положительный. Для кодирования логического нуля используется нулевой потенциал, а логическая единица кодируется либо положительным потенциалом, либо отрицательным, при этом потенциал каждой новой единицы противоположен потенциалу предыдущей. В AMI используются три уровня сигнала на линии. Дополнительный уровень требует увеличения мощности передатчика примерно на 3 дБ для обеспечения той же достоверности приема бит на линии, что является общим недостатком кодов с несколькими состояниями сигнала по сравнению с кодами, которые различают только два состояния.

§

1.5 Кодирование сигналов

1.5.1 Основные виды и способы обработки

и кодирования данных

Этап подготовки информации связан с процессом формирования структуры информационного потока. Такая структура должна обеспечивать возможность передачи информации от объекта к субъекту (от источника к потребителю) по каналам коммуникаций посредством определенных сигналов или знаков, а также возможность однозначного понимания этих сигналов и обеспечения их записи на соответствующие носители информации. Для этого осуществляется кодирование сигналов.

Кодирование информации – одна из базовых тем курса теоретических основ информатики, отражающая фундаментальную необходимость представления информации в какой-либо форме. При этом слово «кодирование» понимается не в узком смысле – как способ сделать сообщение непонятным для всех, кто не владеет ключом кода, а в широком – как представление информации в виде сообщения на любом языке. В канале связи сообщение, составленное из символов (букв) одного алфавита, может преобразоваться в сообщение из символов (букв) другого алфавита.

Код – правило (алгоритм), сопоставляющее каждое конкретное сообщение (информацию) со строго определенной комбинацией различных символов (или соответствующих им сигналов).

Кодирование – процесс преобразования сообщения (информации) в комбинацию различных символов или соответствующих им сигналов, осуществляющийся в момент поступления сообщения от источника в канал связи.

Кодовое слово – последовательность символов, которая в процессе кодирования присваивается каждому из множеств передаваемых сообщений.

Декодирование – процесс восстановления содержания сообщения по данному коду.

Необходимым условием декодирования является взаимно однозначное соответствие кодовых слов во вторичном алфавите кодируемым символам первичного алфавита.

Устройство, обеспечивающее кодирование, называют кодировщиком.

Система кодирования – совокупность правил кодового обозначения объектов – применяется для замены названия объекта на условное обозначение (код) в целях обеспечения удобной и более эффективной обработки информации, т. е. кодирование – это отображение информации с помощью некоторого языка. Любой язык состоит из алфавита, включающего в себя буквы, цифры и другие символы, и правил составления слов и фраз (синтаксических правил).

Первичный алфавит – символы, при помощи которых записано передаваемое сообщении; вторичный – символы, при помощи которых сообщение трансформируется в код.

Код характеризуется длиной (числом позиций в коде) и структурой (порядком расположения символов, используемых для обозначения классификационного признака).

Неравномерные (некомплектные) коды – это коды, с помощью которых сообщения кодируются комбинациями с неравномерным количеством символов; равномерные (комплектные) – коды, с помощью которых сообщения представлены комбинациями с равным количеством символов.

5)      Для хранения в ЭВМ информация кодируется. При выборе языка создатели руководствовались следующими соображениями:

—     буквы алфавита должны надежно распознаваться (нельзя допустить, чтобы одна буква была принята за другую);

—     алфавит должен быть как можно проще, т. е. содержать поменьше букв;

—     синтаксис языка (правила построения слов и фраз) должен быть строгим, однозначным, не допускающим неопределенности.

6)      Таким свойством обладают математические теории, в них все строго определено.

7)         1.5.2 Кодирование текста

Не возникает никаких проблем при кодировании информации, представимой с помощью ограниченного набора символов – алфавита. Достаточно пронумеровать все знаки этого алфавита и затем записывать в память компьютера и обрабатывать соответствующие номера. Самым простым алфавитом является тот, в котором всего две буквы, два символа.

При кодировании текста для каждого его символа отводится обычно 1 байт. Именно по этой причине ячейка памяти в компьютере сделана так, что может хранить сразу восемь бит (1 байт), т. е. целый символ. Это позволяет использовать 28 = 256 различных символов, так как в ЭВМ надо кодировать все буквы: английские – 52 буквы (прописные и строчные), русские – 66 букв, 10 цифр, знаки препинания, арифметических операций и т. п.:

РазрядностьПримерКоличество
1

2 = 21

200

4 = 22

3000

8 = 23

40000

16 = 24

8)     

9)      Хорошо видно, что если у числа разрядность равна n, то количество n-разрядных чисел равно 2n:

10)   

РазрядностьКоличество чисел
525 = 32
626 = 62
727 = 128
828 = 256
929 = 512
10210 = 1024

11)     

12)      и так далее.

13)      Чтобы закодировать порядка 256 букв и символов, требуется использовать 8-разрядные числа.

Соответствие между символом и его кодом может быть выбрано совершенно произвольно. Однако на практике необходимо иметь возможность прочесть на одном компьютере текст, созданный на другом, поэтому таблицы кодировок стараются стандартизовать. Практически все использующиеся сейчас таблицы основаны на «американском стандартном коде обмена информацией» ASCII. Он определяет значения для нижней половины кодовой таблицы – первых 127 кодов (32 управляющих кода, основные знаки препинания и арифметические символы, цифры и латинские буквы). В результате, эти символы отображаются верно, какая бы кодировка не использовалась на конкретном компьютере. Хуже обстоит дело с национальными символами и типографскими знаками препинания. А особенно не повезло языкам, использующим кириллицу (русскому, украинскому, белорусскому, болгарскому и т. д.).

Например, для русского языка сейчас широко используются пять таблиц кодировок:

—     CP866 (альтернативная DOS) – на PC-совместимых компьютерах при работе с операционными системами DOS и OS/2, а также в любительской международной сети Фидо (Fidonet);

—     CP1251 (Windows-кодировка) – на PC-совместимых компью-терах при работе под Windows 3.1 и Windows 95;

—     KOI-8r – самая старая из использующихся до сих пор кодировок. Применяется на компьютерах, работающих под UNIX, является фактическим стандартом для русских текстов в сети Internet;

—     Macintosh Cyrillic – предназначена для работы со всеми кириллическими языками на Макинтошах.

—     ISO-8859. Эта кодировка задумывалась как международный стандарт для кириллицы, однако на территории России практически не применяется.

14)      Сейчас, когда объем памяти компьютеров чрезвычайно вырос, уже нет необходимости очень сильно «экономить» при кодировании текста. Можно позволить себе роскошь «тратить» для хранения текста вдвое больше памяти (выделяя для каждого символа не 1, а 2 байт). При этом появляется возможность разместить в кодовой таблице – каждый на своем месте – не только буквы европейских алфавитов (латинского, кириллицы, греческого), но и буквы арабского, грузинского и многих других языков и даже большую часть японских и китайских иероглифов, поскольку два байта могут хранить число от 0 до 65 535. Двухбайтная международная кодировка Unicode, разработанная несколько лет назад, теперь начинает внедряться на практике. В компьютере все составные части соединяются между собой с помощью шины (магистрали), т. е. пучка проводов.

15)      Теперь нам должно стать понятно, почему шина содержит 8, 16 или 32 провода. Если в шине 8 проводов, то по ней можно передать одновременно 8 бит, т. е. 1 байт (1 символ) информации. Такой компьютер называется восьмиразрядным, (первые персональные компьютеры IBM).

16)      Если в шине 16 проводов, то по ней можно передать одновременно 2 байт информации; если 32 провода – 4 байт, если 64 провода – 8 байт.

17)     

18)      1.5.3. Два способа кодирования изображения

Изображение на экране компьютера (или при печати с по-мощью принтера) составляется из маленьких точек – пикселов. Их так много, и они настолько малы, что человеческий глаз воспринимает картинку как непрерывную. Следовательно, качество изображения будет тем выше, чем плотнее расположены пиксели (т. е. чем больше разрешение устройства вывода) и точнее закодирован цвет каждого из них.

В простейшем случае каждый пиксел может быть или черным, или белым. Значит, для его кодирования достаточно одного бита. Однако при этом полутона приходится имитировать, чередуя черные и белые пиксели (заметим, что примерно так формируют полутоновое изображение на принтерах и при типографской печати). Чтобы получить реальные полутона, для хранения каждого пикселя нужно отводить большее количество разрядов. В этом случае черный цвет по-прежнему будет представлен нулем, а белый – максимально возможным числом. Например, при восьмибитном кодировании получится 256 разных значений яркости – 256 полутонов.

Сложнее обстоит дело с цветными изображениями, так как здесь нужно закодировать не только яркость, но и оттенок пикселя. Изображение на мониторе формируется путем сложения в различных пропорциях трех основных цветов: красного, зеленого и синего. Значит просто нам нужно хранить информацию о яркости каждой из этих составляющих.

Для получения наивысшей точности цветопередачи достаточно иметь по 256 значений для каждого из основных цветов (вместе это дает 2563 – более 16 млн. оттенков). Во многих случаях можно обойтись несколько меньшей точностью цветопередачи. Если использовать для представления каждой составляющей по 5 бит (тогда для хранения данных пикселя будет нужно не 3, а 2 байт), удастся закодировать 32 768 оттенков.

На практике встречаются (и нередко) ситуации, когда гораздо важнее не идеальная точность, а минимальный размер файла: бывают изображения, где изначально используется небольшое количество цветов. В этих случаях поступают так: собирают все нужные оттенки в таблицу и нумеруют, после чего хранят уже не полный код цвета каждого пикселя, а номера (индексы) цветов в таблице. Чаще всего используют 256-цветные таблицы. В разных компьютерах могут быть приняты разные стандартные таблицы цветов, поэтому не исключено, что открыв полученный от кого-нибудь графический файл, можно увидеть совершенно немыслимую картинку.

При печати на бумаге используется несколько иная цветовая модель: если монитор испускает свет, то оттенок получается в результате сложения цветов, а краски поглощают свет – цвета вычитаются. Поэтому в качестве основных используют голубую, сиреневую и желтую краски. Кроме того, из-за неидеальности красителей к ним обычно добавляют четвертую краску – черную. Для хранения информации о каждой краске чаще всего используют 1 байт.

Растровые изображения очень хорошо передают реальные образы. Они замечательно подходят для фотографий, картин и в случаях, когда требуется максимальная «естественность». Такие изображения легко выводить на монитор или принтер, поскольку эти устройства тоже основаны на растровом принципе. Однако есть у них и ряд недостатков. Растровое изображение высокого качества (с высоким разрешением и большой глубиной цвета) может занимать десятки, и даже сотни мегабайт памяти. Для их обработки нужны мощные компьютеры, но и они нередко «задумываются» на десятки минут. Любое изменение размеров неизбежно приводит к ухудшению качества: при увеличении пикселы не могут появиться «из ничего», при уменьшении – часть пикселов будет просто выброшена.

Есть другой способ представления изображений – объектная (векторная) графика. В этом случае в памяти хранится не сам рисунок, а правила его построения, т. е., например, не все пикселы круга, а команда «построить круг радиусом 30 с центром в точке с координатами (50, 135) и закрасить его красным цветом». Быстродействия современных компьютеров вполне достаточно, чтобы перерисовка происходила почти мгновенно.

На первый взгляд, все становится гораздо более сложным. Зачем же это нужно? Во-первых, и это самое главное, векторное изображение можно как угодно масштабировать, выводить на устройства, имеющие любое разрешение, – и всегда будет получаться результат с наивысшим для данного устройства качеством, ведь картинка каждый раз «рисуется» заново, используя столько пикселов, сколько возможно.

Во-вторых, в векторном изображении все части (так называемые «примитивы») могут быть изменены независимо друг от друга: любой из них можно увеличить, повернуть, деформировать, перекрасить, даже стереть, но остальных объектов это никоим образом не коснется.

В-третьих, даже очень сложные векторные рисунки, содержащие тысячи объектов, редко занимают более нескольких сотен килобайт, т. е. в десятки, сотни, а то и тысячи раз меньше аналогичного растрового.

Но почему, если все так хорошо, векторная графика не вытеснила растровую? Сам принцип ее формирования предполагает использование объектов с исключительно ровными четкими границами, а это сразу выдает их искусственность, поэтому область применения векторной графики довольно ограничена – это чертежи, схемы, стилизованные рисунки, эмблемы и другие подобные изображения.

§

1.4.2.2 Семантическая мера информации

Семантика – наука о смысле, содержании информации.

Для измерения смыслового содержания информации, т. е. ее количества на семантическом уровне, наибольшее признание получила тезаурусная мера, связывающая семантические свойства информации со способностью пользователя принимать поступившее сообщение. Одно и то же информационное сообщение (статья в газете, объявление, письмо, телеграмма, справка, рассказ, чертеж, радиопередача и т. п.) может содержать разное количество информации для разных людей в зависимости от их предшествующих знаний, уровня понимания этого сообщения и интереса к нему.

Для измерения количества семантической информации используется понятие «тезаурус пользователя», т. е. совокупность сведений, которыми располагает пользователь или система.

В зависимости от соотношений между смысловым содержанием информации S и тезаурусом пользователя Sp изменяется количество семантической информации Ic, воспринимаемой пользователем и включаемой им в дальнейшем в свой тезаурус. Характер такой зависимости показан на рисунке 1. 2.

Реферат: Устройства хранения информации 3 -

Рис. 1. 2. Зависимость количества семантической информации, воспринимаемой потребителем, от его тезауруса IC = f(Sp)

Рассмотрим два предельных случая, когда количество семантической информации IC равно 0:

—     при Реферат: Устройства хранения информации 3 - пользователь не воспринимает, не понимает поступающую информацию;

—     при Реферат: Устройства хранения информации 3 - пользователь все знает и поступающая информация ему не нужна.

Максимальное количество семантической информации Реферат: Устройства хранения информации 3 - потребитель приобретает при согласовании ее смыслового содержания S со своим тезаурусом Реферат: Устройства хранения информации 3 - (Реферат: Устройства хранения информации 3 -), когда поступающая информация понятна пользователю и несет ему ранее неизвестные (отсутствующие в его тезаурусе) сведения.

Следовательно, количество семантической информации и новых знаний в сообщении, получаемое пользователем, является величиной относительной.

Относительной мерой количества семантической информации может служить коэффициент содержательности С, определяемый как отношение количества семантической информации к ее объему:

Реферат: Устройства хранения информации 3 -.

1.4.2.3 Прагматическая мера информации

Эта мера определяет полезность информации (ценность) для достижения пользователем поставленной цели. Это величина относительная, обусловленная особенностями использования информации в той или иной системе. Ценность информации целесообразно измерять в тех же самых единицах (или близких к ним), в которых измеряется целевая функция.

Введенные меры информации представлены в таблице 1.3.

Таблица 1.3 Единицы измерения информации и примеры

Мера информацииЕдиницы измеренияПримеры (для компьютерной области)

Синтаксическая:

шенноновский подход

компьютерный подход

Степень уменьшения неопределенности

Единицы представления информации

Вероятность события

Бит, байт, кбайт и т. д.

Семантическая

Тезаурус

Экономические показатели

Пакет прикладных программ, персональный компьютер, компьютерные сети и т. д.

Рентабельность, производительность, коэффициент амортизации и т. д.

ПрагматическаяЦенность использования

Емкость памяти, производительность компьютера, скорость передачи данных и т. д.;

денежное выражение;

время обработки информации и принятия решений

1.4.3 Качество информации

Получая какую-либо информацию, человек пытается ее осмыслить и оценить: Что в ней нового? Насколько она ему важна? Правдива ли она? Может возникнуть множество вопросов относительно полученной информации. Как же правильно ее оценить? Оказывается, любая информация должна обладать рядом свойств. Только определив, насколько ваша информация отвечает присущим ей свойствам, можно оценить ее качество. Качество информации – обобщенная положительная характеристика информации, отражающая степень ее полезности для пользователя.

Важнейшие свойства информации: достоверность, полнота, доступность, актуальность, защищенность, ценность, содержательность, своевременность, защищенность.

Одно из свойств информации – достоверность, означающая истинное, объективное отражение действительности. Как известно, каждый человек воспринимает окружающую действительность субъективно, имея свои собственные, отличные от других взгляд и мнение, поэтому передаваемая или получаемая человеком информация не может быть абсолютно объективна. Она лишь может быть максимально приближена к объективной, например прогноз погоды. Существуют различные источники получения информации о предстоящей погоде: собственные наблюдения, сводки погоды, составленные метеослужбами различных ведомств, городов, а также гидрометеорологическими службами целых регионов. Каждая из этих служб имеет свои средства наблюдения и составления прогнозов, учитывает какие-то показатели больше, какие-то меньше. У всех различная точность предсказания погоды.

Точность информации определяется степенью близости получаемой информации к реальному состоянию объекта, процесса, явления и т. п. Для информации, отображаемой цифровым кодом, известны четыре классификационных понятия точности:

—     формальная, измеряется значением единицы младшего разряда числа;

—     реальная, определяется значением единицы последнего разряда числа, верность которого гарантируется;

—     максимальная, ее можно получить в конкретных условиях функционирования системы;

—     необходимая, определяется функциональным назначением показателя.

Рассмотрим на примере прогноза погоды свойства информации. Получая сводку погоды, в одних случаях нас интересует температура и влажность воздуха, в других – осадки и направление ветра, в третьих, возможно, нам потребуется полная картина предстоящей погоды. Полнота информации означает, что она содержит минимальный, но достаточный для принятия правильного решения состав (набор) показателей. Как неполная, т. е. недостаточная для принятия правильного решения, так и избыточная информации снижают эффективность принимаемых пользователем решений.

Также важно, чтобы получаемая информация соответствовала данной ситуации. Например, можно получить полную сводку погоды из достоверного источника, но она окажется ненужной, если будет содержать сведения недельной давности. Иными словами, информация должна быть актуальной, что определяется степенью сохранения ценности информации для управления в момент ее использования и зависит от динамики изменения ее характеристик и интервала времени, прошедшего с момента возникновения данной информации.

Однако достоверная, полная и актуальная информация о погоде на предстоящую неделю может быть записана (или произнесена) в терминах и обозначениях синоптиков, непонятных большинству людей. В этом случае она окажется бесполезной. Значит информация должна быть выражена в таком виде, который был бы понятен получателю данной информации. В этом заключается следующее свойство информации – доступность, которая обеспечивается выполнением соответствующих процедур ее получения и преобразования.

Получая новую информацию, человек решает, нужна ли она для решения какой-то данной проблемы. Одна и та же информация может быть очень важной для одного и быть абсолютно бесполезной для другого. От того, какие задачи можно решить с помощью данной информации, зависит ее ценность. В зависимости от того, какой объем поступивших данных был переработан, определяется содержательность информации, которая отражает семантическую емкость.

С увеличением содержательности информации растет семантическая пропускная способность информационной системы, так как для получения одних и тех же сведений требуется преобразовать меньший объем данных. Одинаково нежелательны как преждевременная подача информации (когда она еще не может быть усвоена), так и ее задержка. Только своевременно полученная информация может принести ожидаемую пользу. Своевременность информации означает ее поступление в соответствии со временем решения поставленной задачи.

Защищенность – свойство, характеризующее невозможность несанкционированного использования или изменения.

§

1.4.2 Меры информации

Важным вопросом теории информации является установление меры количества и качества информации (рис. 1.1).

Реферат: Устройства хранения информации 3 -

Рис. 1.1. Меры информации

Синтаксическая мера оперирует объемом данных и количеством информации Ia, выраженной через энтропию (понятие неопределенности состояния системы).

Семантическая мера оперирует количеством информации, выраженной через ее объем и степень содержательности.

Прагматическая мера определяется ее полезностью, выраженной через соответствующие экономические эффекты.

1.4.2.1 Синтаксическая мера информации

Эта мера количества информации оперирует с обезличенной информацией, не выражающей смыслового отношения к объекту.

На сегодняшний день наиболее известны следующие способы количественного измерения информации: объемный, энтропийный, алгоритмический.

Объемный является самым простым и грубым способом измерения информации. Соответствующую количественную оценку информации естественно назвать объемом информации.

Объем информации – это количество символов в сообщении. Поскольку одно и то же число может быть записано многими разными способами, т. е. с использованием разных алфавитов, например двадцать один – 21– XXI– 11001, то этот способ чувствителен к форме представления (записи) сообщения. В вычислительной технике вся обрабатываемая и хранимая информация вне зависимости от ее природы (число, текст, отображение) представлена в двоичной форме (с использованием алфавита, состоящего всего из двух символов «0» и «1»).

В двоичной системе счисления единица измерения – бит (bit – binary digit – двоичный разряд).

В теории информации бит – количество информации, необходимое для различения двух равновероятных сообщений; а в вычислительной технике битом называют наименьшую «порцию» памяти, необходимую для хранения одного из двух знаков «0» и «1», используемых для внутримашинного представления данных и команд. Это слишком мелкая единица измерения, на практике чаще применяется более крупная единица – байт, – равная 8 бит, необходимых для того, чтобы закодировать любой из 256 символов алфавита клавиатуры компьютера (256 = 28).

Широко используются также еще более крупные производные единицы информации:

1 килобайт (кбайт) = 1024 байт = 210 байт;

1 Мегабайт (Мбайт) = 1024 кбайт = 220 байт;

1 Гигабайт (Гбайт) = 1024 Мбайт = 230 байт.

В последнее время в связи с увеличением объемов обрабатываемой информации входят в употребление следующие производные единицы:

1 Терабайт (Тбайт) = 1024 Гбайт = 240 байт;

1 Петабайт (Пбайт) = 1024 Тбайт = 250 байт.

В десятичной системе счисления единица измерения – дит (десятичный разряд).

Пример.

Сообщение в двоичной системе в виде восьмиразрядного двоичного кода 1011 1011 имеет объем данных VД = 8 бит.

Сообщение в десятичной системе в виде шестиразрядного числа 275 903 имеет объем данных VД = 6 бит.

В теории информации и кодирования принят энтропийный подход к измерению информации. Получение информации о какой-либо системе всегда связано с изменением степени неосведомлен-ности получателя о состоянии этой системы. Этот способ измерения исходит из следующей модели.

Пусть до получения информации потребитель имеет некоторые предварительные (априорные) сведения о системе α. После получения сообщения b получатель приобрел некоторую дополнительную информацию I(b), уменьшившую его неосведомленность. Эта информация в общем случае недостоверна и выражается вероятностями, с которыми он ожидает то или иное событие. Общая мера неопределенности (энтропия) характеризуется некоторой математической зависимостью от совокупности этих вероятностей. Количество информации в сообщении определяется тем, насколько уменьшится эта мера после получения сообщения.

Так, американский инженер Р. Хартли (1928 г.) процесс получения информации рассматривает как выбор одного сообщения из конечного наперед заданного множества из N равновероятных сообщений, а количество информации i, содержащееся в выбранном сообщении, определяет как двоичный логарифм N (формула Хартли):

Реферат: Устройства хранения информации 3 -.

Допустим, нужно угадать одно число из набора чисел от единицы до ста. По формуле Хартли можно вычислить, какое количество информации для этого требуется: Реферат: Устройства хранения информации 3 -, т. е. сообщение о верно угаданном числе содержит количество информации, приблизительно равное 6,644 единицам информации.

Другие примеры равновероятных сообщений:

1)   при бросании монеты «выпала решка», «выпал орел»;

2)   на странице книги «количество букв четное», «количество букв нечетное».

Нельзя ответить однозначно на вопрос, являются ли равновероятными сообщения «первой выйдет из дверей здания женщина» и «первым выйдет из дверей здания мужчина». Все зависит от того, о каком именно здании идет речь. Если это, например, станция метро, то вероятность выйти из дверей первым одинакова для мужчины и женщины, а если это военная казарма, то для мужчины эта вероятность значительно выше, чем для женщины.

Для задач такого рода американский ученый Клод Шеннон предложил в 1948 г. другую формулу определения количества информации, учитывающую возможную неодинаковую вероятность сообщений в наборе (формула Шеннона):

Реферат: Устройства хранения информации 3 -,

где Реферат: Устройства хранения информации 3 - – вероятность того, что именно i-е сообщение выделено в наборе из N сообщений.

Легко заметить, что если вероятности Реферат: Устройства хранения информации 3 - … Реферат: Устройства хранения информации 3 - равны, то каждая из них равна Реферат: Устройства хранения информации 3 - и формула Шеннона превращается в формулу Хартли.

Помимо двух рассмотренных подходов к определению количества информации, существуют и другие. Важно помнить, что любые теоретические результаты применимы лишь к определенному кругу случаев, очерченному первоначальными допущениями.

В алгоритмической теории информации (раздел теории алгоритмов) предлагается алгоритмический метод оценки информации в сообщении. Любому сообщению можно приписать количественную характеристику, отражающую сложность (размер) программы, которая позволяет ее произвести.

Коэффициент (степень) информативности (лаконичности) сообщения определяется отношением количества информации к общему объему полученных данных:

Реферат: Устройства хранения информации 3 -, причем 0 < Y < 1.

С увеличением Y уменьшаются объемы работ по преобразованию информации (данных) в системе. Поэтому необходимо стремиться к повышению информативности, для чего разрабатываются специальные методы оптимального кодирования информации.

§

1.4 Информация и ее свойства

1.4.1 Информация и данные

Слово «информация», известное в наше время каждому, было введено в постоянное употребление в середине ХХ в. Клодом Шенноном в узком техническом смысле применительно к теории связи или передачи кодов, получившей название «теория информации». В настоящее время этот термин имеет гораздо более глубокий смысл. Это стало следствием необходимости осознанной организации процессов движения и обработки того, что имеет общее название «информация» (от лат. informatio – разъяснение, осведомление, изложение) и является основным понятием информатики. Несмотря на значительное развитие этой науки и ее составных частей, однозначного и всеми принятого определения информации нет.

Рефераты:  Психические расстройства у больных с легочной патологией - Психические расстройства в общей медицине №02-03 2015 - CON-MED.RU

Информация – это настолько общее и глубокое понятие, что его нельзя объяснить одной фразой. В это слово вкладывают различный смысл в науке, технике и житейских ситуациях.

Информация – это совокупность знаний о фактических данных и зависимостях между ними; содержание, которое присваивается данным посредством соглашений, распространяющихся на них; данные, подлежащие вводу в компьютер, обрабатываемые на нем и выдаваемые пользователю; законы, методы и способы накопления, обработки и передачи информации с помощью компьютеров и иных технических устройств.

В рамках дисциплины «Информатика» оперируют следующим определением:

«Информация – сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые уменьшают имеющуюся о них степень неопределенности и неполноты знаний».

Информатика рассматривает информацию как концептуально связанные между собой знания, сведения, изменяющие наши представления о явлении или объекте окружающего мира. Эти знания можно разделить на две категории: знание фактов («Я знаю, что…» – декларативные знания) и знание правил («Я знаю, как…» – процедурные знания). Для того чтобы правильно определить свои действия в конкретной ситуации, равно необходимы и те, и другие.

Информация может существовать в самых разнообразных формах: в виде текстов, рисунков, чертежей, фотографий, световых или звуковых сигналов, радиоволн, электрических и нервных импульсов, магнитных записей, жестов и мимики, запахов и вкусовых ощущений, хромосом, посредством которых передаются по наследству признаки и свойства организмов, и т. д.

Предметы, процессы, явления материального или нематериального свойства, рассматриваемые с точки зрения их информационных свойств, называются информационными объектами.

Классификация видов информации представлена в таблице 1.2.

Таблица 1.2

Направления классификацииВиды информации
Сфера использования

—            экономическая;

—            техническая;

—            генетическая

Форма представления

—            текстовая;

—            числовая;

—            графическая

Способ передачи и восприятия

—            визуальная (передаваемая видимыми образами и символами);

—            аудиальная (передаваемая звуками);

—            тактильная (передаваемая ощущениями);

—            органолептическая (передаваемая запахом и вкусом);

—            машинная (выдаваемая или воспринимаемая ЭВМ)

Область возникновения

—            элементарная (отражающая процессы и явления неодушевленной природы);

—            биологическая (процессы живой природы);

—            социальная (человеческого общества)

Вид

—            непрерывная (величина характеризующая процесс, не имеющий перерывов или промежутков);

—            дискретная (последовательность символов, характеризующая прерывистую изменяющуюся величину)

Внутренняя организация

—            данные или простой, логически неупорядоченный набор сведений;

—            логически упорядоченные наборы данных

Упорядоченность данных достигается наложением на них некоторой структуры (отсюда часто используемый термин – структура данных).

Особым образом при этом выделяют организованную информацию – знания. Они в отличие от данных представляют собой информацию не о каком-то единичном и конкретном факте, а о том, как устроены все факты определенного типа.

Знание – совокупность специализированных (ориентированных на решение многих задач из определенной предметной области) фактов, правил обработки фактов, условий применения этих правил к конкретным фактам, методов получения новых фактов и способов организации процесса логического вывода.

Свойства знаний:

1)   внутренняя интерпретируемость (сопоставление исходных данных, понятий и отношений с некоторыми математическими или логическими объектами и отношениями между ними);

2)   понимание смыслового содержания информационных единиц в ЭВМ;

3)   активность (переосмысливание известных фактов при появлении новых сведений);

4)   связность (возможность установления функциональных, структурных, семантических и других отношений между фактами и правилами);

5)   конвертируемость (изменение формы представления знаний в процессе принятия решений).

Не программы управляют данными, а появление новых сведений приводит к вызову программ обработки информации, уже имеющейся в системе.

Знания – это «живая», диалектическая система; они передаются другим людям, материализуются и существуют в трех формах:

—     «живые» (квалификация);

—     овеществленные;

—     информация (сообщения).

Наряду с понятием «информация» в информатике часто употребляется понятие «данные», которые можно рассматривать:

1)   как признаки или записанные наблюдения, которые по каким-то причинам не используются, а только хранятся;

2)   информация, представленная в виде, пригодном для обработки автоматическими средствами при возможном участии человека [4];

3)   факты, понятия или команды, представленные в формализованном виде, позволяющем осуществлять их передачу, интерпре-тацию или обработку как вручную, так и с помощью систем автоматизации [12].

Если появляется возможность использовать эти данные для уменьшения неопределенности о чем-либо, они превращаются в информацию, поэтому можно утверждать, что информацией являются используемые данные. Например: Напишите на листе десять номеров телефонов в виде последовательности десяти чисел и покажите их вашему другу. Он воспримет эти цифры как данные, так как они не предоставляют ему никаких сведений. Затем против каждого номера укажите название фирмы и род деятельности. Для вашего друга непонятные цифры обретут определенность и превратятся из данных в информацию, которую он в дальнейшем мог бы использовать.

Когда говорят об автоматизированной работе с информацией посредством каких-либо технических устройств, обычно в первую очередь интересуются не содержанием сообщения, а количеством символов, которое содержит это сообщение.

§

1. Большинство работающих (около 70 %) занято в информационной сфере, т. е. сфере производства информации и информационных услуг.

2. Обеспечены техническая, технологическая и правовая возможности доступа любому члену общества практически в любом пункте расположения и в приемлемое время к нужной ему информации (за исключением военных и государственных секретов, точно оговоренных в соответствующих законодательных актах).

3. Информация становится важнейшим стратегическим ресурсом общества и занимает ключевое место в экономике, образовании и культуре.

Материальной и технологической базой информационного общества станут различного рода системы на базе компьютерной техники и компьютерных сетей, информационной технологии, телекоммуникационной связи.

Процесс, обеспечивающий этот переход, получил название «информатизация». Информатизация общества – организованный социально-экономический и научно-технический процесс создания условий для удовлетворения информационных потребностей и реализации прав граждан, органов государственной власти, органов местного самоуправления, организаций, общественных объединений на основе формирования и использования информационных ресурсов. При этом информация становится важнейшим стратегическим ресурсом общества и занимает ключевое место в экономике, образовании и культуре.

Неизбежность информатизации общества обусловлена возрастанием объема информации, которое особенно стало заметно в середине XX в. Лавинообразный поток информации хлынул на человека, не давая ему возможности воспринять эту информацию в полной мере. В ежедневно появляющемся новом потоке информации ориентироваться становилось все труднее. Подчас выгоднее стало создавать новый материальный или интеллектуальный продукт, чем вести розыск аналога, сделанного ранее.

Образование больших потоков информации обусловливается:

—     чрезвычайно быстрым ростом числа документов, отчетов, диссертаций, докладов и т. п., в которых излагаются результаты научных исследований и опытно-конструкторских работ;

—     постоянно увеличивающимся числом периодических изданий по разным областям человеческой деятельности;

—     появлением разнообразных данных (метеорологических, геофизических, медицинских, экономических и др.), записываемых обычно на магнитных лентах и поэтому не попадающих в сферу действия системы коммуникации.

Как результат – наступает информационный кризис (взрыв), следующие проявления:

—     появляются противоречия между ограниченными возможностями человека по восприятию и переработке информации и существующими мощными потоками и массивами хранящейся информации. Так, общая сумма знаний менялась вначале очень медленно, но уже с 1900 г. она удваивалась каждые 50 лет, а к 1950 г. удвоение происходило каждые 10 лет, к 1970 г. – каждые 5 лет, с 1990 г. – ежегодно;

—     существует большое количество избыточной информации, которая затрудняет восприятие полезной для потребителя информации;

—     возникают определенные экономические, политические и другие социальные барьеры, препятствующие распространению информации. Например, по причине соблюдения секретности часто к необходимой информации запрещен доступ работникам разных ведомств.

Эти причины породили весьма парадоксальную ситуацию: в мире накоплен громадный информационный потенциал, но люди не могут им воспользоваться в полном объеме в силу ограниченности своих возможностей. Выходом из создавшегося положения явилось бурное развитие компьютерной техники и информационных технологий.

Современная информационная технология опирается на достижения в области компьютерной техники и средств связи.

Информационная технология (ИТ) – процесс, использующий совокупность средств и методов сбора, обработки и передачи данных (первичной информации) для получения информации нового качества о состоянии объекта, процесса или явления.

Важнейшим видом информационных технологий является телекоммуникация – дистанционная передача данных на базе компьютерных сетей и современных технических средств связи.

Процесс перехода от постиндустриального общества к информационному происходит не одновременно в различных странах и характеризуется разными темпами развития. Первыми на этот путь встали в конце 50-х гг. – начале 60-х гг. XX в. США, Япония и страны Западной Европы. В этих государствах, начиная с 60–70-х гг., проводится политика повсеместной информатизации всех сфер деятельности человека. Были разработаны и приняты на государственном уровне программы информатизации с целью наиболее полного использования информационного ресурса для ускорения экономического, социального и культурного развития общества. Предполагается, что США завершат переход к информационному обществу к 2020 г., Япония и основные страны Западной Европы – к 2030–2040 гг.

В СССР в 1989 г. была разработана Концепция информатизации общества. По предварительным оценкам информатизация в России завершится к 2050 г. при условии стабилизации экономической и политической обстановки в стране. По мнению специалистов, любая страна, насколько бы индустриально развитой она ни была, перейдет в разряд стран третьего мира, если опоздает с информатизацией.

Если предшествующие этапы развития человечества длились каждый около трех веков, то ученые прогнозируют, что информационный этап продлится значительно меньше. Срок его существования ограничится, вероятно, сотней лет. Это означает, что основные регионы мира войдут в развитое информационное общество в XXI в., и в этом же веке начнется переход к постинформационному обществу.

В процессе информатизации общества происходит создание и накопление основного вида ресурса – информационного. Информационные ресурсы (ИР) – это идеи человечества и указания по их реализации, накопленные в форме, позволяющей их воспроизводство.

Основные особенности информационных ресурсов:

1)   отличие от других видов ресурсов (в частности материальных) практически неисчерпаемы; по мереРеферат: Устройства хранения информации 3 - развития общества и роста потребления знаний их запасы не убывают, а растут;

2)   по мере использования не исчезают, а сохраняются и даже увеличиваются (за счет трансформации полученных сообщений с учетом опыта и местных условий);

3)   несамостоятельны и имеют лишь потенциальное значение. Только соединяясь с другими ресурсами (опытом, трудом, квалификацией, техникой, энергией, сырьем), проявляются как движущая сила;

4)   являются формой непосредственного включения науки в состав производительных сил. В индустриальном обществе наука выступает опосредованной производительной силой;

5)   возникают в результате не просто умственного труда, а его творческой части. Рутинная часть умственной работы сама по себе не информативна: она не увеличивает потенциала нужных знаний, не меняет представлений о путях достижения цели;

6)   превращение знаний в информационные ресурсы зависит от возможностей их кодирования, распределения и передачи.

Существуют две формы ИР: пассивная и активная.

К пассивной относятся книги, журнальные статьи, патенты и банки данных, а также знания, привязанные к конкретным предметным областям (например, выборки, извлечения данных и т. п.), если они некомплексные, т. е. недостаточные для целенаправленного применения.

Активные формы: модель, алгоритм, проект, программа и база знаний (БЗ).

Модель – это описание системы, отображающее определенную группу ее свойств. Создание модели системы позволяет предсказывать ее поведение в определенном диапазоне условий.

Алгоритм – это совокупность правил, предписывающих выполнение последовательности действий, приводящих к решению задачи.

Программа и проект – конечные синтетические формы существования ИР в его жизненном цикле.

База знаний (knowledge base) – это совокупность знаний о некоторой предметной области, на основе которых можно производить рассуждения; основная часть экспертных систем, где с по-мощью БЗ представляются навыки и опыт экспертов, разрабатывающих эвристические подходы в ходе решения проблем. БЗ представляет собой набор фактов и правил, формализующих опыт специалистов в этой области и позволяющих давать ответы на вопросы об этой предметной области, которые в явном виде не содержатся в БЗ.

В отличие от баз данных, содержащих сведения о количественных и качественных характеристиках конкретных объектов, БЗ содержат концептуальные, понятийные знания, выраженные на естественном языке в терминах предметной области, т. е. знания о стоящих за этими терминами классах объектов, их свойствах и логических связях, которыми может оперировать машина логического вывода как элемент искусственного интеллекта.

§

1.3 Информатизация общества

В истории развития цивилизации произошло несколько информационных революций – преобразований общественных отношений из-за кардинальных изменений в сфере обработки информации. Их следствием явилось приобретение человеческим обществом нового качества.

Первая революция произошла с изобретением письменности, что привело к гигантскому качественному и количественному скачку. Появилась возможность передачи знаний от поколения к поколению.

Вторая (середина XVI в.) вызвана изобретением книгопечатания, радикально изменившим индустриальное общество, культуру, организацию деятельности.

Третья (конец XIX в.) обусловлена изобретением электричества, благодаря чему появились телеграф, телефон, радио (1895 г.), позволяющие оперативно передавать информацию.

Четвертая (70-е гг. XX в.) связана с изобретением микропроцессорной технологии и появлением персонального компьютера. На микропроцессорах и интегральных схемах создаются компьютеры, компьютерные сети, системы передачи данных (информационные коммуникации). Этот период характеризуют три фундаментальные инновации:

1.   Переход от механических и электрических средств преобразования информации к электронным.

2.   Миниатюризация всех узлов, устройств, приборов, машин.

3.   Создание программно-управляемых устройств и процессов.

Для создания более целостного представления об этом периоде целесообразно познакомиться с приведенной ниже справкой о смене поколений ЭВМ и сопоставить эти сведения с этапами развития в области обработки и передачи информации (табл. 1.1).

История зарождения и развития вычислительной техники довольно коротка. Ее принято исчислять с 1833 г., когда английский математик Чарльз Беббидж впервые проникся идеей создания механического «вычислительного помощника», в котором используется принцип программного управления. Потребовалось более 100 лет, чтобы эта идея, обогащенная американским математиком Дж. фон Нейманом в 1945–1947 гг., положила начало эры ЭВМ, базирующихся на появившихся к тому времени электронных лампах.

Первая быстродействующая ЭВМ ЭНИАК, созданная американскими специалистами в Пенсильванском университете, состояла из 18 тыс. электронных ламп, потребляла более 100 кВт электроэнергии, весила 30 т и занимала комнату длиной 30 м. Машина была специализированной и предназначалась для решения дифференциальных уравнений в задачах расчета траекторий. С момента создания в 1947 г. первой программно-управляемой цифровой ЭВМ начался бурный прогресс вычислительной техники.

Таблица 1.1Справка о смене поколений ЭВМ

Поко-лениеВремяЭлементная базаХарактеристика
1-еНачало 50-х гг.Электронные лампыЭВМ отличались большими габаритами, высоким потреблением энергии, малым быстродействием, низкой надежностью, программированием в кодах
2-еС конца 50-х гг.Полупроводни-ковые элементыУлучшились все технические характеристики. Для программирования использовались алгоритмические языки
3-еНачало 60-х гг.Интегральные схемы, многослойный печатный монтажРезкое снижение габаритов ЭВМ, повышение их надежности, увеличение производительности
4-еС сере-дины 70-х гг.Микропроцессоры, большие интегральные схемы (БИС)Улучшились технические характеристики. Массовый выпуск персональных компьютеров. Направление развития: мощные многопроцессорные вычислительные системы с высокой производительностью, создание дешевых микроЭВМ
5-еС сере-дины 80-х гг.Разработка интеллектуальных компьютеровВнедрение во все сферы компьютерных сетей и их объединение, использование распределенной обработки данных, повсеместное применение компьютерных технологий

Совершенствование элементной базы привело к существенному уменьшению размеров, стоимости и энергопотребления, а также к повышению быстродействия и надежности ЭВМ. Эволюция архитектурных решений способствовала успешному росту последних двух показателей. Большие успехи были достигнуты также в области периферийного оборудования, что существенно облегчило общение пользователей ЭВМ.

В 1982 г. Х. Тунг и А. Гупта провели сравнение, иллюстрирующее высокие темпы развития средств вычислительной техники (СВТ): «Если бы за последние 25 лет авиационная промышленность развивалась столь же стремительно, как и вычислительная техника, то «Боинг-767″ можно было бы приобрести сегодня за 500 долл. и облететь на нем земной шар за 20 минут, израсходовав при этом 19 литров горючего». С тех пор скорость вычислений возросла в 20 раз, а размеры и энергопотребление ЭВМ стали в 10 000 раз меньше, чем у машин сравниваемой производительности 25-летней давности. В последние годы отмеченные тенденции не только сохранились, но и усилились. Исходя из этого вполне закономерным явилось появление микропроцессоров (МП) и создание на их основе микроЭВМ, венцом которых стали ПЭВМ. Первая персональная машина была сконструирована американской фирмой MITS в 1975 г. и названа Altair 8800. По сегодняшним меркам она, ощетинившаяся индикаторными лампочками и переключателями, выглядит довольно странно. Цена ее составляла около 6 000 долл. Эта машина давно уже не выпускается.

Следующая ПЭВМ была создана в буквальном смысле в гараже двумя американцами С. Возняком и С. Джобсоном в 1976 г. Она получила название Apple-I. Весной 1977 г. ими же был изготовлен относительно дешевый и вместе с тем вполне законченный персональный компьютер Apple-II. В результате домашняя мастерская превратилась в процветающую фирму Apple Computer, которая продолжительное время занимала достойное место на рынке ПЭВМ.

В начале 80-х гг. в ряды производителей ЭВМ влились компьютерные гиганты International Business Machine Corp (IBM), DEC и Hewlett-Packard.

Во второй половине XX в. человечество вступило в новый этап своего развития. В этот период начался переход от индустриального общества к информационному.

Бурное развитие компьютерной техники и информационных технологий послужило толчком к развитию общества, построенного на использовании различной информации и получившего название информационного общества.

Информационное общество – общество, в котором большинство работающих занято производством, хранением, переработкой и реализацией информации, особенно высшей ее формы – знаний.

Японские ученые считают, что в информационном обществе процесс компьютеризации даст людям доступ к надежным источникам информации, избавит их от рутинной работы, обеспечит высокий уровень автоматизации обработки информации в производственной и социальной сферах. Движущей силой развития общества должно стать производство информационного, а не материального продукта. Материальный продукт станет информационно более емким, что означает увеличение доли инноваций, дизайна и маркетинга в его стоимости.

В информационном обществе изменятся не только производство, но и весь уклад жизни, система ценностей, возрастет значимость культурного досуга по отношению к материальным ценностям. По сравнению с индустриальным обществом, где все направлено на производство и потребление товаров, в информационном обществе производятся и потребляются интеллект, знания, что приводит к увеличению доли умственного труда.

Для информационного общества характерно обеспечение требуемой степени информированности всех его членов, возрастание объема и уровня информационных услуг, предоставляемых пользователю. Такое общество в теоретическом аспекте характеризуется высокоразвитой информационной сферой (инфосферой), которая включает деятельность человека по созданию, переработке, хранению, передаче и накоплению информации.

Информационное общество имеет следующие признаки:

§

1.1 Понятие, содержание, объект и предмет информатики

Термин «информатика» начал использоваться в отечественной научно-технической литературе в начале 80-х гг. и быстро приобрел широкую популярность. Первоначально он зародился во Франции в середине 60-х гг. ХХ в. (от фр. informatique) и применяется в странах Европы для обозначения области научных знаний, связанных с автоматизацией обработки информации с помощью электронных вычислительных машин (ЭВМ). В англоязычных странах для этой цели используется термин «computer science» (вычислительная наука).

Выделение информатики как самостоятельной области человеческой деятельности в первую очередь связано с развитием компьютерной техники, причем основная заслуга в этом принадлежит микропроцессорной технике, появление которой в середине 70-х гг. послужило началом второй электронной революции. С этого времени элементной базой вычислительной машины становятся интегральные схемы и микропроцессоры, а область, связанная с созданием и использованием компьютеров, получила мощный импульс в своем развитии.

В 1978 г. международный научный конгресс официально закрепил за понятием «информатика» направления, связанные с разработкой, созданием, использованием и материально-техническим обслуживанием систем обработки информации, включая компьютеры и их программное обеспечение, а также организационные, коммерческие, административные и социально-политические аспекты компьютеризации, т. е. массовое внедрение компьютерной техники во все области жизни людей.

Существует множество определений информатики, что связано с многогранностью ее функций, возможностей, средств и методов. Обобщая опубликованные в литературе по информатике определения этого термина, предлагаем следующую трактовку.

Информатика — это основанная на использовании компьютерной техники дисциплина, изучающая структуру и общие свойства информации, а также закономерности и методы ее создания, хранения, поиска, преобразования, передачи и применения в различных сферах человеческой деятельности.

Часто возникает путаница понятий «информатика» и «кибернетика». Попытаемся разъяснить их сходство и различие.

Кибернетика – это наука об общих принципах управления в различных системах: технических, биологических, социальных и др.

Информатика занимается изучением процессов преобразования и создания новой информации более широко, практически не решая задачи управления различными объектами, как кибернетика. Информатика появилась благодаря развитию компьютерной техники, базируется на ней и совершенно немыслима без нее. Кибернетика развивается сама по себе и, активно используя достижения компьютерной техники, совершенно от нее не зависит, так как строит различные модели управления объектами.

Информатика – научная дисциплина с широчайшим диапазоном применения:

в разработке вычислительных систем и пpогpаммного обеспечения;

теории информации, изучающей процессы, связанные с передачей, приемом, преобразованием и хранением информации;

методах искусственного интеллекта, позволяющих создавать программы для решения задач, требующих определенных интеллектуальных усилий при выполнении их человеком (логический вывод, обучение, понимание речи, визуальное восприятие, игры и др.);

системном анализе, заключающемся в анализе назначения проектируемой системы и в установлении требований, которым она должна отвечать;

методах машинной графики, анимации, средствах мульти­медиа;

средствах телекоммуникации, в том числе глобальных компьютерных сетях, объединяющих все человечество в единое информационное сообщество;

разнообразных приложениях, охватывающих производство, науку, образование, медицину, торговлю, сельское хозяйство и все другие виды хозяйственной и общественной деятельности.

Информатику представляют состоящей из трех частей: технические, программные и алгоритмические средства.

Технические средства, т. е. аппаратура компьютеров, в английском языке обозначаются словом Hardware, которое буквально переводится как «твердые изделия».

Для программных средств выбрано (а точнее, создано) слово Software (буквально – «мягкие изделия»), подчеркивающее равнозначность программного обеспечения и самой машины и способность программного обеспечения модифицироваться, приспосабливаться, развиваться.

Программное обеспечение – это совокупность всех программ, используемых компьютерами, а также вся область деятельности по их созданию и применению.

Алгоритмические средства российский академик А. А. Дородницин предложил называть Brainware (от англ. brain – интеллект). Эта часть информатики связана с разработкой алгоритмов и изучением методов и приемов их построения. Нельзя приступить к программированию, не разработав предварительно алгоритм решения задачи.

В Академии ФСО России дисциплина «Информатика» предназначена для подготовки специалистов по направлению «Информатика и вычислительная техника» и является одной из основных дисциплин естественнонаучного цикла. Это теоретический базис, основа для подготовки специалиста, умеющего решать задачи профессиональной деятельности в области автоматизированных систем обработки информации и управления. Освоение учебного материала дисциплины базируется на общей физико-математической подготовке обучаемых, знаниях основ информатики, иностранного языка; умениях использовать математические методы при формализации и решении прикладных задач.

Такие знания и умения обучаемые приобретают при изучении дисциплин «Физика», «Высшая математика», «Информатика» (в объеме средней школы) и соответствующих дисциплин вуза.

Дисциплина содержит материал, необходимый для изучения информации, как основного объекта государственно-правового регулирования деятельности должностных лиц в различных сферах и видах деятельности, в том числе органов государственной власти и местного самоуправления. Она носит теоретико-прикладную направленность. Ее содержание включает как фундаментальные знания информационной науки, так и основные вопросы практического использования новых информационных технологий, в основе которых лежит применение ЭВМ, систем и сетей ЭВМ.

Объектом информатики выступают автоматизированные, основанные на ЭВМ и телекоммуникационной технике, информационные системы различного класса и назначения. Рассматриваются все стороны их разработки, проектирования, создания, анализа и использования на практике.

Предмет информатики как науки составляют аппаратное и программное обеспечение средств вычислительной техники, средства взаимодействия аппаратного и программного обеспечения, средства взаимодействия человека с аппаратными и программными средствами.

Средства взаимодействия в информатике принято называть интерфейсом, поэтому средства взаимодействия аппаратного и программного обеспечения называют также программно-аппаратным интерфейсом, а средства взаимодействия человека с аппаратными и программными средствами – интерфейсом пользователя.

1. 2 Задачи, роль и место курса информатики в подготовке специалистов

Цели изучения дисциплины:

1. Подготовка выпускника к деятельности в территориальных органах и подразделениях связи специального назначения Службы специальной связи и информации ФСО РФ на инженерных и командных должностях на базе полученных в соответствии со специальностью, знаний, умений и навыков в области автоматизированных систем обработки информации и управления.

2. Развитие у подготавливаемых специалистов основ информационного мышления и культуры, адекватных современному уровню развития информационной науки и новым информационным технологиям.

3. Формирование знаний и умения использовать естественно-научные знания информатики и математики, необходимые для выполнения служебной деятельности в различных сферах развивающегося информационного общества: социально-правовой, информационной, обеспечения информационной безопасности личности, общества и государства, защиты конфиденциальной информации и сведений, составляющих государственную, коммерческую и другие виды тайны; постановки информационных задач, моделирования и анализа информации; осуществления дальнейшего профессионального самообразования в области информатики и математики.

Задачи изучения дисциплины:

1. Создание научных представлений об информатике как особом способе познания мира, об их месте и роли в общей системе социально-экономических, гуманитарных, естественнонаучных, общепрофессиональных и специальных дисциплин.

2. Развитие информационной культуры, в которой рассматриваются основные положения информатизации общества, понятия информации, ее свойств, характеристик, современных информационных технологий.

3. Ознакомление с научно-методологической, методической, понятийной основами информатики, а также с особенностями использования в изучении и исследовании правовых учений, процессов, общественных отношений.

4. Изучение концептуальных взглядов, направлений, проблем, перспектив развития информатики.

5. Изучение современных принципов, методов и средств сбора, обработки, передачи, хранения и переработки информации, в том числе правовой.

6. Изучение методических и практических проблем технологии автоматизации видов и сфер государственно-правовой деятельности и связанных с ними процессов обработки информации.

7. Приобретение необходимых знаний в области алгоритмизации и программирования задач профессиональной деятельности.

8. Получение знаний устройства и основных принципов работы персонального компьютера как основного инструмента по обработке информации.

9. Овладение умениями использования и работы с современными информационными технологиями, а также со стандартным и специализированным программным обеспечением:

−    привитие умения эффективного использования персональных компьютеров в правореализационной и правотворческой деятельности;

−    формирование адаптивности специалиста к непрерывному изучению основных видов и средств представления и обработки информации;

−    приобретение знаний об организации внедрения, методах и способах использования новых информационных технологий для повышения эффективности государственной деятельности;

−    изучение базовых понятий, положений, современных проблем и направлений обеспечения информационной безопасности личности, общества и государства и информационных систем;

−    привитие навыков информационного мышления при решении задач оперативно-служебной деятельности;

−    раскрытие содержания общих понятий о численной реализации задач с целевыми функциями на персональных компьютерах.

В результате изучения дисциплины «Информатика» специалисты должны соответствовать государственным требованиям к минимуму содержания и уровню подготовки специалиста, а также дополнениям к государственным требованиям к минимуму содержания и уровню подготовки выпускника Академии ФСО России.

В результате изучения дисциплины «Информатика» курсанты должны

знать:

—     характеристики и архитектуру основных классов ЭВМ;

—     структуру, технические характеристики и особенности построения основных устройств современных ЭВМ;

—     принципы алгоритмизации, технологию разработки программ решения информационных и вычислительных задач с помощью ЭВМ;

—     один из языков программирования высокого уровня (Turbo Pascal);

—     назначение и возможности текстовых и табличных процессоров, интегрированных программных средств;

—     назначение, принцип построения и возможности систем управления базами данных (СУБД);

—     назначение и возможности операционных систем и системного программирования;

уметь:

—     работать с операционной системой (ОС) и ее оболочками;

—     составлять программу обработки информации;

—     формализовать прикладную задачу и разработать алгоритм ее решения на ЭВМ;

—     работать с текстовыми и табличными процессорами и СУБД;

—     работать с пакетами прикладных программ специального назначения;

—     организовывать грамотную эксплуатацию вычислительной техники;

иметь представление:

—     о современной технологии программирования сложных систем обработки информации;

—     способах защиты информации, обрабатываемой на ЭВМ, от несанкционированного доступа, копирования, уничтожения, а также основных способах борьбы с компьютерными вирусами.

Роль информатики в развитии общества чрезвычайно велика. С ней связано начало революции в области накопления, передачи и обработки информации. Эта революция, следующая за революциями в области овладения веществом и энергией, затрагивает и коренным образом преобразует не только сферу материального производства, но и интеллектуальную, духовную сферы жизни.

Рост производства компьютерной техники, развитие информационных сетей, создание новых информационных технологий приводят к значительным изменениям во всех сферах общества: производстве, науке, образовании, медицине и т. д.

Оцените статью
Реферат Зона
Добавить комментарий